
Sustainable Security: Exploring Longevity Challenges
and Solutions for IoT

by

Conner Bradley

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Master of Computer Science

Carleton University

Ottawa, Ontario

© 2023, Conner Bradley



Abstract

The Internet of Things (IoT) has become increasingly integrated with our everyday

lives providing physical and direct value to societies across the world. While small

embedded devices are increasingly becoming integrated into products by IoT device

vendors, so do our concerns about the longevity of these integrations. Unlike general-

purpose computers, IoT devices are expected to be in service for long periods of

time. While an IoT device may only need to perform simple tasks over its lifespan,

the surrounding networked environment and potential threats will evolve. To ensure

that IoT devices remain secure over extended periods and are not compromised by

adversaries, they need to be supported throughout their entire lifespan. This places

a significant burden on device vendors who are reluctant, and sometimes technically

unable to maintain software for decades after deployment.

In this thesis, we examine IoT device longevity through the lens of security. Specif-

ically, we are interested in the aspects of IoT device security that limits device

longevity. To begin, we focus on understanding the current landscape of software

updates in IoT. To our knowledge, software update practices in current IoT devices

i



are not yet well understood, despite a large body of research aiming to create new

methodologies for keeping IoT devices up to date.

We then discuss a major shortcoming of current software update systems for IoT,

which is characterized by a single point of failure: the IoT device vendor. Without

support and updates from the device vendor, the software for the IoT device will

become outdated and may experience negative consequences due to the constantly

evolving security landscape. To overcome this challenge, we propose a new vendor

agility approach for IoT device longevity. This approach would allow devices to

receive support from sources beyond their first-party vendors.

Finally, we implement part of our vendor agility model to demonstrate feasibility

on embedded devices. Our aim is to demonstrate how cross-platform embedded code

can be created without the need for proprietary tools. Our proof of concept serves

as a starting point for future research and work to break the dependency between

devices and vendors, enabling long-term support and security for embedded systems.

ii



Acknowledgements

First and foremost, I would like to thank my supervisor Dr. David Barrera for his

guidance and support throughout my time at the Carleton Internet Security Lab. His

mentorship has been instrumental in shaping my research and guiding me through

the intricacies of my academic journey.

I would also like to thank the members of my committee, Dr. David Knox and

Dr. Lianying Zhao for taking the time to read my thesis and provide their valuable

thoughts and insights. Their feedback has significantly enhanced the quality of this

thesis.

I would also like to thank my colleagues in the Carleton Security Research Labs

(CCSL and CISL) for their support and the many stimulating discussions, which have

been a constant source of inspiration and motivation. I would also like to extend my

appreciation to CCSL’s dilapidated server infrastructure, which, in its own unique

way, provided an unexpected but much-needed distraction from my research.

Finally, I would like to thank my friends and family for their support and encour-

agement – this milestone would not have been possible without your support.

iii



Contents

Abstract i

Acknowledgements iii

List of Tables ix

List of Figures x

List of Code Listings xii

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Background 11

2.1. The Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1. Resource-Constrained Devices . . . . . . . . . . . . . . . . . . 13

iv



Contents

2.2. Operating Systems for IoT Devices . . . . . . . . . . . . . . . . . . . 16

2.2.1. Protecting Memory . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2. Monolithic Kernel . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3. Microkernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4. Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3. Longevity and Durability of Software . . . . . . . . . . . . . . . . . . 20

2.3.1. Software Updates . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2. Software Update Schemes for IoT . . . . . . . . . . . . . . . . 22

2.4. Longevity of Software Update Schemes . . . . . . . . . . . . . . . . . 26

2.4.1. Criteria for Longevity of Software Update Schemes . . . . . . 27

2.4.2. Longevity Comparison of Software Update Schemes . . . . . . 31

2.5. WebAssembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. Software Updates in IoT: An Empirical Study 38

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1. Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2. Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1. Update Keywords Results . . . . . . . . . . . . . . . . . . . . 50

3.3.2. Update Events Results . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3. Observed Update Design Patterns . . . . . . . . . . . . . . . . 55

v



Contents

3.3.4. Cipher Suite Results . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.5. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4. Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1. D-Link Camera Firmware . . . . . . . . . . . . . . . . . . . . 62

3.4.2. Apple TV Firmware . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.3. WeMo Update Service . . . . . . . . . . . . . . . . . . . . . . 68

3.5. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4. Extending IoT Device Longevity 74

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2. On IoT Software and Firmware Updates . . . . . . . . . . . . . . . . 79

4.2.1. Software Update Schemes for IoT . . . . . . . . . . . . . . . . 80

4.2.2. Device Vendors as a Single (and Complex) Point of Failure . . 82

4.2.3. Software Updates within Walled Gardens . . . . . . . . . . . . 85

4.3. Non-Solutions to IoT Longevity . . . . . . . . . . . . . . . . . . . . . 87

4.3.1. Software Updates as a Paid Service . . . . . . . . . . . . . . . 87

4.3.2. Device Leasing Model . . . . . . . . . . . . . . . . . . . . . . 88

4.3.3. Release of Source Code and Tooling . . . . . . . . . . . . . . . 90

4.3.4. Unified IoT Protocols . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.5. Open-source IoT Frameworks . . . . . . . . . . . . . . . . . . 92

4.3.6. IoT Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vi



Contents

4.4. Longevity and Durability in IoT Device Software . . . . . . . . . . . 95

4.4.1. Obsolescence and the IoT Lifecycle . . . . . . . . . . . . . . . 97

4.5. Towards IoT Device Longevity . . . . . . . . . . . . . . . . . . . . . . 104

4.5.1. What Makes a Long-lasting System? . . . . . . . . . . . . . . 104

4.5.2. The “I” in IoT Stands for Impermanence . . . . . . . . . . . . 105

4.5.3. Inspiration from Previous Paradigm Shifts . . . . . . . . . . . 107

4.6. A New Paradigm for IoT Device Longevity . . . . . . . . . . . . . . . 111

4.6.1. Addressing the Maintenance Burden . . . . . . . . . . . . . . 111

4.6.2. Detecting First-Party Vendor Failure . . . . . . . . . . . . . . 116

4.6.3. Vendor Agility . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6.4. Transition Security . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7.1. Right to Repair . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7.2. Towards a Circular IoT Economy . . . . . . . . . . . . . . . . 127

4.7.3. Sustainable Design . . . . . . . . . . . . . . . . . . . . . . . . 129

4.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5. Implementation 132

5.1. Implementation Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.1. Memory Safety . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.1.2. WebAssembly Implementation Scope . . . . . . . . . . . . . . 137

5.1.3. Implementation Challenges . . . . . . . . . . . . . . . . . . . . 137

vii



Contents

5.2. Implementation of a WebAssembly Runtime . . . . . . . . . . . . . . 139

5.2.1. Parsing WebAssembly . . . . . . . . . . . . . . . . . . . . . . 139

5.2.2. Executing WebAssembly . . . . . . . . . . . . . . . . . . . . . 143

5.2.3. Memory Management . . . . . . . . . . . . . . . . . . . . . . . 147

5.3. Proof of Concept on Embedded Systems . . . . . . . . . . . . . . . . 148

5.3.1. Interfacing With Host Functionality . . . . . . . . . . . . . . . 149

5.3.2. Implementation on a RISC-V Target . . . . . . . . . . . . . . 151

5.3.3. Implementation on an ARM Target . . . . . . . . . . . . . . . 153

5.4. Security Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5. Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 157

5.5.1. The Future of Embedded WebAssembly . . . . . . . . . . . . 159

5.5.2. Longevity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6. Conclusion 162

Bibliography 165

Appendices 185

A. WebAssembly Demo Program 185

List of Abbreviations 193

viii



List of Tables

2.1. Extended IoT device classes . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Longevity comparison of software update schemes . . . . . . . . . . . 30

4.1. Proposed vendor-liveliness heuristics . . . . . . . . . . . . . . . . . . 117

ix



List of Figures

2.1. Internet Engineering Task Force (IETF) Software Updates for Internet

of Things (SUIT) Architecture . . . . . . . . . . . . . . . . . . . . . . 23

2.2. Example showing Rust and WebAssembly formats . . . . . . . . . . . 36

3.1. Packet capture data extraction pipeline . . . . . . . . . . . . . . . . . 44

3.2. Keyword results by device and interaction event . . . . . . . . . . . . 53

3.3. Transport Layer Security (TLS) cipher usage per device . . . . . . . . 59

3.4. Example attack scenario for vulnerable device . . . . . . . . . . . . . 64

3.5. AppleTV update process . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1. Vendor support Venn diagram . . . . . . . . . . . . . . . . . . . . . . 83

4.2. IoT lifecycle timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3. Our proposed IoT development model . . . . . . . . . . . . . . . . . . 113

5.1. WebAssembly module instantiation process . . . . . . . . . . . . . . . 142

5.2. WebAssembly execution process . . . . . . . . . . . . . . . . . . . . . 146

x



List of Figures

5.3. WebAssembly demonstration on the ESP and Nordic boards . . . . . 154

xi



List of Code Listings

5.1. WebAssembly Opcode representation as a Rust struct . . . . . . . . . 144

5.2. Memory buffer and environment . . . . . . . . . . . . . . . . . . . . . 148

5.3. Memory instance structure . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4. Structure of a host handler in Rust . . . . . . . . . . . . . . . . . . . 150

5.5. WebAssembly external function declarations in Rust . . . . . . . . . . 151

5.6. Example policy language for WebAssembly peripheral access . . . . . 156

A.1. WebAssembly SPI demonstration program . . . . . . . . . . . . . . . 186

xii



Chapter 1.

Introduction

Longevity is a problem that impacts all software developers, whether they consciously

consider it when creating software or not. Once a piece of software is created from

source code to executable, or from script to interpreter, programs themselves remain

static and unable to change or evolve on their own over time. However, the surround-

ing environment is subject to change and evolution. New protocols emerge, rendering

existing ones obsolete. Cryptographic algorithms become outdated, and as hardware

advances, the system interfaces that developers rely upon also evolve. This poses a

challenge for software that depends on services and functionality from interconnected

systems, as sudden changes or non-backward-compatible updates in those systems

can cause the software to break.

Not all software requires adaptability or change. Systems that don’t require exter-

nal connectivity, such as embedded devices running firmware without internet access,

1



Chapter 1. Introduction

have traditionally been deployed without any mechanism for software updates. Since

they don’t rely on internet connectivity, the complexity of their firmware is signifi-

cantly reduced, allowing for simpler software designs that can be thoroughly verified.

However, when embedded devices require internet connectivity, the complexity of

the device software increases dramatically. The additional layers of abstraction for

network stacks, encryption, and wireless radio drivers contribute to a much more

complex system. What was once a device with a relatively small set of verifiable

requirements now becomes a system with heightened complexity and numerous un-

knowns that cannot be fully addressed during the creation of the device’s firmware.

These unknowns involve future changes that impact assumptions and designs made

in the past such as encryption sustainability, core protocol changes, and the possi-

ble impact of changes from external dependencies such as Network Time Protocol

(NTP) [85].

The IoT has grown rapidly in recent years, resulting in the widespread use of

internet-connected devices in our daily lives. These devices are typically built using

small, inexpensive embedded systems that run embedded firmware. One key feature of

IoT devices is their integration into appliances, vehicles, and other everyday objects.

As a result, they often have a much longer expected service life compared to general-

purpose computers. While a typical computer may last for 5-10 years before being

replaced, IoT device hardware has the potential to endure for up to 30 years or

more. However, the main limitation of IoT device lifetimes is not their hardware, but

2



Chapter 1. Introduction

their software, as outdated software can render the device obsolete and vulnerable to

security threats [125, 57].

The rationale behind the extended lifespan of IoT devices can be attributed to

the lifespan of their analog counterparts [49]. Consider a conventional light switch,

these can remain functional for several decades before requiring replacement due to

wear and tear. The lifespan of this purely analog device is the benchmark for its

IoT counterpart: an IoT-enabled light switch should be able to meet, or exceed, this

benchmark in terms of service life.

This longevity of IoT devices introduces unique challenges. Firstly, the hardware

and firmware of these devices must be designed with long-term reliability in mind.

Ensuring that the embedded systems can withstand the test of time becomes crucial.

Moreover, software updates and security patches need to be regularly maintained to

keep these devices secure and up to date, even over an extended lifespan.

1.1. Motivation

A concerning trend in the IoT industry is increasingly smaller device lifetimes [57,

92]. From the perspective of hardware durability, IoT devices could very well meet

the benchmarks set by their analog counterparts despite being more complex [49].

The main problem harming IoT device lifespans is not the hardware. Rather, it is

the software that runs these embedded devices.

3



Chapter 1. Introduction

As we previously mentioned, interconnected systems greatly increase the complex-

ity of the software needed to run them. The additional functionality and complexity

of IoT device software implies some form of ongoing maintenance or support from

the original device vendor. Generally speaking, the original device vendor is the only

entity that is capable of supporting these IoT devices, as they possess the tooling,

methods, and knowledge of the proprietary embedded systems that they create.

When a vendor ceases to support an IoT device, the device will no longer receive

software updates, thus becoming stagnant and failing to keep up with the evolving

technological landscape. While the world around it adapts and strengthens itself

against emerging security threats, the stagnant device remains vulnerable. This lack

of support poses risks not only to the owners of these devices but also to the entire

IoT ecosystem. In the early days of IoT, this issue was not a significant concern for

device users. However, consumers are now increasingly aware of the limited support

provided by device vendors, typically lasting only 2 to 5 years. This limited support

renders devices that could potentially last for decades practically useless [57].

The resource constraints of IoT devices present a challenge when considering long-

term software deployment models. Many of the strategies that have been successful

in other industries cannot be directly applied to IoT due to resource constraints.

Ensuring decades of backward compatibility and support – such as the application

compatibility shims used by Microsoft Windows and the Windows NT (NT) ker-

nel – involves additional complexity and expensive abstractions that are not feasible

4



Chapter 1. Introduction

for resource-constrained embedded devices [34, 35]. IoT devices often operate with

limited processing power, memory, and storage capacity, making it difficult to ac-

commodate the necessary software updates and maintenance required for long-term

support.

1.2. Problem

We are particularly interested in what the security research community can do to

enable longer lifespans for IoT devices. Thus, finding new hardware-based solutions

to this problem is out of our immediate scope. Specifically, we are interested in

how the industry is approaching keeping IoT devices functional and secure for long

periods. Within this context, functionality and security are simultaneously required

for IoT devices to achieve longevity. If an IoT device loses functionality and the

manufacturer is not providing support, the end user will replace it. Likewise, if an

IoT device is not secure due to a lack of support, the increased vulnerability of the

device will negatively impact devices and potentially create harm to broader IoT

ecosystems [10].

We seek to understand the current landscape of firmware updates in IoT. We want

to understand – beyond the vacuum of IoT security research – in the real world, are

IoT devices being updated regularly by their vendors? As previously mentioned, a

lack of software updates for IoT devices harms both the security and functionality

5



Chapter 1. Introduction

of devices. Furthermore, what levels of standardization and while there are several

novel designs for secure firmware update systems oriented towards embedded devices,

are any of these designs being used? Likewise, if vendors are not adopting solutions

from the security research community, are they using solutions that are comparable

in security measures?

Once we have our understanding of the current landscape of maintenance and sup-

port from vendors to deployed IoT devices, we are interested in what measures can

be taken to extend support periods. Specifically, a common theme with IoT software

update systems is an inherent dependency between IoT devices and vendors. For ex-

ample, if vendor x manufactures and distributes a given IoT device, only that vendor

is going to have the ability to develop and distribute software for that device. This in-

herently creates a single point of failure; without vendor x in existence, the devices it

manufactured and supported will no longer receive software updates, preventing even

another vendor or open-source community y from supporting the now unsupported

devices from vendor x.

This particular edge case is commonly overlooked in current IoT software update

systems, few consider the possibility of long-term support beyond a single vendor’s

existence. We believe the solution to this new paradigm involves decoupling the IoT

device from its vendor to enable vendor agility.

6



Chapter 1. Introduction

1.3. Contributions

The contributions in this thesis are focused on improving the longevity and security of

IoT devices, and the main contributions are divided into three parts. The first contri-

bution C1 involves an assessment of the current security landscape of software update

systems in IoT devices. The results of this assessment serve as motivation for the

subsequent contributions C2 and C3, which propose a new security paradigm based

on longevity and outline the implementation of a solution aimed at enhancing both

IoT device longevity and security. We expand on the details of these contributions

below.

C1 Identification and evaluation of firmware updates. In Chapter 3 we conducted

an empirical study to examine the security and overall landscape of firmware

updates in consumer IoT devices. As far as we know, this study represents one

of the first comprehensive analyses of consumer IoT network traffic specifically

focused on identifying communications related to software updates. During

our investigation, we discovered common design patterns employed by several

IoT devices and identified potential vulnerabilities that could be exploited. We

present a detailed case study of various software update schemes and practices

that we uncovered through our methodology. Furthermore, we provide an event-

based characterization of IoT device update behavior. We offer insights into

the different conditions that prompt IoT devices to initiate updates. Overall,

7



Chapter 1. Introduction

our study sheds light on the security aspects of firmware updates in consumer

IoT devices, presenting real-world examples and vulnerabilities. By conducting

this analysis, we aim to contribute to the understanding of the current state

of firmware updates in the consumer IoT landscape, highlighting areas that

require attention and improvement to ensure the security and integrity of these

devices.

C2 IoT device longevity as a new security paradigm. In Chapter 4 we show that

longevity and durability are not commonly applied perspectives when it comes

to building software and security measures for IoT software. Given that many

IoT devices are being deployed in situations where a long-term deployment

model1 is applicable, we believe that these devices should have additional mea-

sures to ensure that a device can continue to function, even after the original

device creator stops supporting it or ceases to exist. We pose new problems of

longevity and durability in IoT software to combat the growing e-waste crisis

and ensure functional devices do not end up in landfills. We argue that the

lack of long-term support for IoT software leads to device vulnerabilities and

loss of functionality over time. To overcome this challenge, we propose a new

approach that assumes the original manufacturer may no longer support the

device, necessitating alternative methods for secure and continuous updates.

1Long-term relative to other devices. General-purpose computers may have a deployment model
of 5-10 years, while IoT devices may be expected to last for 20-50 years.

8



Chapter 1. Introduction

Drawing parallels with other industries, we present a blueprint for designing

IoT software/firmware stacks that explicitly account for the potential aban-

donment of the first-party vendor. We advocate for a decentralized approach

where trusted parties take over security updates and patches. We introduce

heuristics for devices to autonomously determine when vendor support ends

and transition to a community-supported update channel. Finally, we address

the challenges of securing IoT software transitions with a comparison between

centralized, distributed, and hybrid approaches for ensuring the longevity of

software updates.

C3 Proof of concept implementation of IoT vendor agility. In Chapter 5 we take the

aforementioned model as a blueprint and provide a proof of concept implemen-

tation of our envisioned vendor agility system for IoT devices. We implement a

platform-independent runtime designed specifically for the resource constraints

of IoT devices. Our proof-of-concept WebAssembly runtime is designed to run

on bare metal, or in conjunction with an operating system, to provide the ba-

sis for how IoT software developers from different organizations can provide

support using the aforementioned vendor transition model.

9



Chapter 1. Introduction

1.4. Related Publications

The majority of the content presented in Chapters 3 and 4 has been published as

a peer-reviewed publication and accepted for publication, respectively. Both publi-

cations were written primarily by the author of this thesis, Conner Bradley under

the supervision of his supervisor Dr. David Barrera, who played a crucial role in

supervising the publications.

• C. Bradley and D. Barrera. Towards characterizing IoT software update prac-

tices. In Foundations and Practice of Security, pages 406–422. Springer, 2023.

doi: 10.1007/978-3-031-30122-3_25

• C. Bradley and D. Barrera. Escaping Vendor Mortality: A New Paradigm

for Extending IoT Device Longevity. To appear in proceedings of the 2023

New Security Paradigms Workshop, NSPW ’23, Segovia, Spain. Association for

Computing Machinery, 2023

10

https://doi.org/10.1007/978-3-031-30122-3_25


Chapter 2.

Background

This chapter provides the needed background information to contextualize discus-

sions and ideas in later chapters. Section 2.1 provides a thorough definition of what

the Internet of Things means in the context of this work. Section 2.2 provides an

overview of operating system designs in IoT with a comparison to general-purpose

computing to further develop a picture of the limitations of IoT devices. In Sec-

tion 2.3 we provide an introduction to longevity and durability in the context of IoT

software, which is applied throughout Chapters 3 and 4. We introduce software up-

date schemes for IoT in Section 2.4, with an analysis of long-term longevity in these

update schemes. Finally, Section 2.5 provides some context on WebAssembly that is

relevant to Chapter 5.

11



Chapter 2. Background

2.1. The Internet of Things

The Internet of Things (IoT) is a broad term that describes objects (things) that are

capable of sensing, actuating, and communicating information between themselves.

There is an inherent cyber-physical nature for IoT devices, as the sensing from sensors

and peripherals and actuating in response to sensory input allows these devices to

perceive and act upon the physical world. Generally speaking, IoT devices include

any physical device with some form of network connectivity – not necessarily internet

connectivity – that has sensors and/or actuators that enable the extension of an

interconnected system into the physical world. The “things” in IoT can be existing

objects or devices such as home appliances, vehicles, and industrial systems, or these

things can be completely new devices that have not previously been possible.

At this point, readers would expect a more technical definition of what an IoT

device is. What characteristics, traits, and unique values set an IoT device apart

from any other computer? This is the problem with IoT: because of the increasingly

broad umbrella of what is encompassed by the Internet of things, it is impossible

to define what IoT is and what IoT is not. For example, the “I” in IoT refers to

the internet, yet IoT devices do not need to connect to the internet [45, 19, 21], nor

do they need to use the commonplace protocols that are used on the internet (e.g.,

TCP/IP). As a whole, IoT has become a misnomer; however, IoT remains the term

of choice for researchers and industry.

12



Chapter 2. Background

It is crucial to define what subset IoT devices we are referring to as a target of this

thesis. Our scope of IoT devices is based partially on resource constraints, but also

on the intended use case of the device itself. Resource constraints are only partially

useful as we discuss in Section 2.1.1, while there are ways of quantifying what is and

is not an IoT device based on the resource-constraints of a particular device, the

broader research community is largely in disagreement of existing quantification of

IoT.

2.1.1. Resource-Constrained Devices

The Internet of Things is largely made up of resource-constrained devices. IoT devices

are purpose-made with a particular goal or application known when a product is being

designed, which allows product engineers to decide on the appropriate hardware for

the particular application of an IoT device. Ideally, the hardware chosen by engineers

is minimal enough for the device’s intended usage. While this process optimizes the

product’s hardware, the converse effect of this is that minimal hardware imposes

resource constraints on those building software for IoT devices.

Resource constraints on IoT devices are typically classified based on the speci-

fications of the device’s hardware [90]. Such specifications include the processing

capabilities of the Central Processing Unit (CPU), Random Access Memory (RAM)

capacity, and nonvolatile storage capacity. The IETF has a standardized set of de-

vice classes for resource-constrained devices, we summarize the classes presented in

13



Chapter 2. Background

Class RAM Size Flash Size Example Platforms Software
Class 0 <<10 KiB <<100 KiB ATmega48,

PIC 16F
Application-specific
firmware

Class 1 ∼10 KiB ∼100 KiB STM32F1,
LPC1100

Specialized OS,
firmware

Class 2 ∼50 KiB ∼250 KiB nRF52832 Specialized IoT OS,
firmware

Class 3 >250 KiB <1 MiB ESP32,
nRF52840

Specialized IoT
OS, some general-
purpose OS

Table 2.1.: The table of device classes presented in RFC 7228 [25] has been aug-
mented to include a newly added Class 3. While Class 3 is not part of
RFC 7228 [25], it becomes necessary to consider new device classes as IoT
devices become more powerful, with increased RAM and flash storage, in
order to keep up with industry advancements.

Request for Comments (RFC) 7228 in Table 2.1 along with some example IoT devel-

opment platforms and use-cases that would fit these resource constraints [25]. Note

that RFC 7228 was originally written in 2014 – 9 years ago at the time of writing –

and the development platforms for IoT along with the resource capabilities of these

devices have evolved since then. We present a new class, Class 3, which encom-

passes the more powerful and modern microcontrollers and SoCs commonly used in

resource-constrained device development.

The addition or modification of constrained device classes is a common theme in

many other works. Bellman et al. suggest a Class 2+ of devices, which shares some

motivational similarities to our proposal of a Class [22]. There have been efforts to

14



Chapter 2. Background

propose new classes to RFC 7228, a working draft by Bormann et al. proposes a

Class 3 of IoT devices which include 100 KiB of RAM and ∼500 KiB - ∼ 1000 Kib

of flash, in addition to proposing a Class 4, Class 10, among others [26]. Similarly, El

Jaouhari et al. proposes classes 3, 4, and 5 with similarly increased specifications for

these higher classes [45]. Overall, the sheer amount of new device classifications points

towards an aforementioned theme in IoT: the research community seems largely in

disagreement on what an IoT device is, thus any quantified measurement or “binning”

of IoT devices by hardware class is largely a poor measure of what an IoT device is

and is not.

As shown in Table 2.1, the resource constraints of IoT devices typically preclude

them from using general-purpose operating systems as the hardware itself does not

have the needed features and capabilities to support the extra overhead of general-

purpose operating systems. Class 0 IoT devices typically use custom-made firmware

(discussed further in Section 2.2.4) instead of an operating system. Devices in classes 1

and 2 have more flash and RAM, allowing them to use IoT-specific operating systems

instead of purpose-made firmware.

Another key difference that has large implications for building secure software on

IoT devices is most microcontrollers lack a Memory Management Unit (MMU), in-

stead having a Memory Protection Unit (MPU) or no form of hardware-assisted

memory protection, which we discuss further in Section 2.2.

15



Chapter 2. Background

2.2. Operating Systems for IoT Devices

Most general-purpose computers rely on the abstraction of a process, which is an

instance of a program managed by an operating system. This abstraction of a process

relies on certain hardware features such as privilege levels, MMU, and large amounts

of RAM allowing general-purpose operating systems to provide this key abstraction

for application developers [108].

Resource-constrained microcontrollers used in IoT may only have a small subset of

the features needed to use a general-purpose operating system. In this section, we

review the limitations of embedded devices and discuss embedded operating systems

designed to deal with these limitations.

2.2.1. Protecting Memory

One of the major hurdles in building operating systems for embedded devices is

providing clean and secure abstractions of system memory. In conventional general-

purpose Operating System (OS), this abstraction is typically taken care of by virtual

memory, which presents programs with an abstraction of physical memory. Instead

of programs using the physical addresses of the memory they occupy, the operating

system will map physical memory addresses to virtual ones that are used by the

program. This facade allows the OS to present memory that may be fragmented

across many physical regions, or even paged to disk [108].

16



Chapter 2. Background

Mapping virtual memory is typically assisted by a hardware component called

a MMU, which translates virtual addresses to physical addresses, providing mem-

ory protection, and enabling memory sharing among multiple processes. The MMU

achieves these tasks by implementing techniques such as paging or segmentation [108].

In the context of the microcontrollers and SoCs used in IoT (see Table 2.1), a MMU

is not typically found on resource-constrained IoT devices. Thus, operating systems

designed to run on these resource-constrained devices cannot leverage virtualized

memory. Instead, embedded devices employ a Memory Protection Unit (MPU). The

primary purpose of an MPU is to provide memory protection and access control

on a per-region basis. Regions of memory can be marked as readable, writable, or

executable, to provide a coarse-grained isolation mechanism. Note that this means

that software on these devices also cannot leverage virtual memory, thus, all the

memory addresses that are available to software are the physical memory addresses,

not a mapping to a physical memory address.

2.2.2. Monolithic Kernel

In the context of an operating system’s kernel, a monolithic kernel is a type of operat-

ing system kernel architecture where all operating system services and functionality

share the same address space. The monolithic nature of this type of kernel refers to

all kernel functionality running in privilege ring 0. In a monolithic kernel, all services

that are technically separate operate without any enforced separation [108, 105].

17



Chapter 2. Background

Amonolithic kernel includes core system functionality such as process management,

memory management, device drivers, file system support, and network protocols.

These components are tightly integrated and operate in privileged mode – occupying

a single address space, and thus a single privileged domain – allowing them direct

access to hardware and system resources.

While monolithic kernels are inherently less secure due to no privilege separation

between internal kernel components, monolithic kernels tend to outperform their mi-

crokernel counterparts due to there being no overhead for switching between address

spaces.

2.2.3. Microkernel

Microkernels, in contrast to monolithic kernels, aim to provide the least amount of

functionality in ring 0 and instead abstract kernel functionality into isolated services

running in user space. Microkernels divide system services into separate, isolated

modules called servers. These servers communicate with each other through well-

defined message-passing mechanisms, such as Inter-Process Communication (IPC).

Microkernels are more modular than monolithic kernels as individual kernel services

can be updated independently, not requiring a single monolith to be re-built [73].

While the extreme approach taken by microkernels provides excellent isolation be-

tween components, the primary drawback of a microkernel approach is the increased

overhead of communication between servers. This additional overhead is one large

18



Chapter 2. Background

reason many general-purpose operating systems today are not microkernel-based. In

embedded contexts, the additional overhead poses additional challenges for Real-Time

Operating Systems (RTOSs) [105].

2.2.4. Firmware

Firmware is a specialized type of software that is embedded within hardware, typ-

ically stored in Read-Only Memory (ROM) or Programmable Read-Only Memory

(PROM) [104]. Firmware is specifically designed to run on particular hardware and

is designed to perform a single, specific function. This function can vary widely de-

pending on the device it is associated with. For example, firmware in a Solid State

Drive (SSD) will be responsible for wear-leveling flash, handling requests to the flash

storage, and other tasks that are specific to a SSD. Because of the limited scope of

what a device’s firmware is responsible for, firmware can be developed without the

additional complexity and resource requirements of an operating system [105].

In contrast, a kernel within a general-purpose OS provides abstractions and facili-

ties to enable the broad usage of hardware. It serves as the core component of an OS,

responsible for managing system resources, scheduling tasks, and facilitating com-

munication between software and hardware. Unlike firmware, a kernel is designed to

support a wide range of applications and functions, providing a platform for processes

to run and interact with the hardware more flexibly.

19



Chapter 2. Background

2.3. Longevity and Durability of Software

One of our primary objectives is to increase the longevity of IoT devices. However,

to work towards this goal we must first outline what longevity means. Longevity

describes the period a given product is useful (i.e., its useful “life”), where the period

is measured from when a product is placed into operation to the moment it is de-

commissioned or discarded [84]. Longevity is thus a subjective measure of how long

a product can remain useful to its environment [39].

Within the context of computer science, the longevity of software can be thought

of as the relevance of the functionality it provides at the current point in time. For

example, if an IoT operating system only supports Bluetooth Low Energy (BLE)

networks, it may have poor longevity if its current environment deprecates BLE in

favor of a different incompatible network.

While longevity is an entirely subjective measure of how useful a product is within

a specific context, durability describes objective measures of lifespan. Durability is

the period when a given product was designed to be functional [37]. Factors driving

durability are primarily objective, such as the type and quality of materials used, the

maximum lifetime of components as listed on data sheets, and the expected usage

of the device that can cause wear and tear [49]. Factors impacting durability also

impact reliability, these factors are generally correlated.

Unlike a physical tangible product, the durability of software is harder to quantify.

20



Chapter 2. Background

Software durability can be thought of as software quality, where a highly durable piece

of software should accomplish all of its projected requirements with high levels of

reliability, no bugs, and no vulnerabilities. Within the context of software durability,

any bug or vulnerability1 will negatively harm the durability of the piece of software.

We continue this discussion in Chapter 4, where we further expand on the sig-

nificance of longevity and durability of IoT device software and analyze potential

solutions for extending the lifetime of IoT devices.

2.3.1. Software Updates

As we discussed in Chapter 1, programs are static. Unless the program is self-

modifying – which is a very uncommon practice – a program cannot change or evolve

itself. In the bigger picture of longevity and durability, the longevity of software can

be negatively impacted by the static nature of programs. For example, protocols,

APIs, and interfaces that a piece of software depends on may evolve, and this evo-

lution may lead to breaking changes that cause a loss of functionality. This loss of

functionality impacts longevity, as a less functional device may be making the device

less useful in its broader environment.

The continuous evolution of software environments also impacts durability. As

critical protocols evolve to adapt against new threats or pre-existing bugs, a static

1Assuming the software is intended to be free of bugs and vulnerability. For example, if vulnerability
is an intentional requirement then a vulnerable piece of software could still be considered highly
durable as it would be functioning as intended.

21



Chapter 2. Background

piece of software will not inherently receive the benefits of the evolving environment.

For example, if a vulnerability was found in a shared library responsible for ensuring

the confidentiality and integrity of transmitted data – such as OpenSSL – the static

nature of a program means that even if the vulnerability is fixed, it will not reap

these benefits.

Given the long-term deployments that several types of IoT devices may face, soft-

ware update systems for IoT should be hardened to withstand long-term issues. Issues

we have seen impact IoT devices over long periods include outdated and vulnerable

cryptographic implementations, which can impact the security of encrypted commu-

nication channels [29, 91].

2.3.2. Software Update Schemes for IoT

Prior surveys of software update systems for IoT by El Jaouhari et al. [45] and Bel-

lissimo et al. [20] comprehensively overview various traits of software update systems

for IoT devices, however, these prior surveys do not adequately consider the longevity

of the update schemes themselves.

We chose a selection of commonly-researched software update schemes for IoT

devices, and other software update schemes that have been applied in some capacity

in a IoT context. For example, if an update framework was originally designed for

non-IoT contexts but a future work augments or enhances the framework in an IoT

context, we include it below. We are particularly interested in common frameworks

22



Chapter 2. Background

Author

Firmware Server IoT Device

Status Tracker

Firmware
+ Manifest

Firmware
+ Manifest

Device Management

Checks

Network Operator

Device Operator

Figure 2.1.: Overview of the architecture of IETF SUIT [81]. The device operator
is responsible for the day-to-day operation of a fleet of IoT devices, and
the network operator is responsible for the network that the IoT device
connects to.

or frameworks that meet some of our criteria for longevity, defined in Section 2.4.1.

The Internet Engineering Task Force (IETF) created the SUIT project to create

a standards-track software update system that is generic and flexible enough to en-

compass several IoT deployment verticals [81, 45, 56]. SUIT defines an architecture

for generating and distributing firmware to IoT devices. SUIT defines a manifest

model that contains metadata to describe the firmware image, such as dependencies,

cryptographic information to validate the image, and information on the version and

author of the firmware.

Figure 2.1 shows the overall architecture of IETF SUIT. An author who creates and

manages firmware for IoT devices can distribute the firmware and associated mani-

23



Chapter 2. Background

fest to a distribution server. IoT devices managed by a network operator can fetch

firmware and manifests from the distribution server, with device state information

being synchronized to a status tracker which is managed by the device operator.

The Update Framework (TUF) by Samuel et al. is a novel software update scheme

that protects developers against compromise of signing keys [101]. TUF makes use

of several protection mechanisms such as utilizing multiple key roles to limit damage

if a single key is compromised. The framework utilizes timestamping and snapshot-

ting to ensure metadata remains valid for a specific time and creates a consistent

view of the repository, guarding against tampering. By treating each update as a

separate release with a version number, TUF ensures that only legitimate updates

are accepted. Furthermore, TUF supports delegated roles, enabling the distribution

of responsibilities and signing authority among entities, which mitigates the risk as-

sociated with individual key compromise. Finally, the framework allows for offline

revocation mechanisms, enabling the invalidation of compromised keys without an

online connection.

Uptane by Karthik et al. is based on TUF with modifications that make it suitable

for automotive applications [64]. Uptane’s threat model goes beyond securing against

attacks during the update process and also considers the entire supply chain security.

Modifications and enhancements to TUF include the addition of a director repository,

which allows a software vendor to have more control of software images deployed in

individual automotive Engine Control Units (ECUs).

24



Chapter 2. Background

Asokan et al. designed an architecture for Secure Software Updates of Realistic

Embedded Devices (ASSURED) [13]. ASSURED is designed to include all stakehold-

ers in an IoT ecosystem – namely the device vendor, firmware distributor, domain

controller, and IoT device – to provide end-to-end security and attestation between

all connected entities. The architecture is based on enhancements of TUF, and is

currently the most IoT-applicable variant of TUF.

Lightweight M2M (LwM2M) is not a standalone software update system, rather,

it is a protocol suite for IoT devices that encompasses most IoT device operations

and lifecycle management, which includes software updates [74]. LwM2M is designed

for low-power resource-constrained devices, primarily using Constrained Application

Protocol (CoAP) as an application protocol and Datagram Transport Layer Security

(DTLS) to ensure message integrity, authenticity, and confidentiality.

UpKit by Langiu et al. is a lightweight software update framework for resource-

constrained IoT devices [68]. UpKit aims to encompass firmware generation, prop-

agation, verification, and installation. Upkit’s architecture uses a double-signature

process to ensure firmware freshness to prevent rollback attacks. An additional verifi-

cation step allows for rejecting invalid firmware early in the update process, allowing

the device’s bootloader to reject invalid firmware images before any installation oc-

curs.

Baton by Barrera et al. was not originally designed for resource-constrained IoT de-

vices, rather, it was designed as an extension to Android’s app installation framework

25



Chapter 2. Background

to allow for certificate agility [17]. Through Baton’s certificate agility mechanism, de-

velopers can delegate the signing authority of an application to effectively transfer

applications to a new maintainer, or update existing singing keys with new ones.

There are more comprehensive surveys of software update schemes for IoT that

compare broader sets of criteria that may also impact longevity [45, 19, 56]. Our focus

for this section is not to present a survey of every IoT update scheme in existence,

rather we are interested in commonplace software update schemes intended to address

the challenges of IoT deployments, and additionally, other non-IoT software schemes

that meet some of our criteria of longevity, which we discuss further in Section 2.4.1.

2.4. Longevity of Software Update Schemes

With the importance of software update schemes established for IoT devices, this sec-

tion compares existing software update schemes for IoT through the lens of longevity.

Note that some of the update schemes we have chosen were not inherently designed

for IoT, but they were originally designed for forms of IoT devices2.

To aid in the comparison of existing update schemes, we present criteria for eval-

uating the longevity of firmware update schemes by looking at the longevity of the

cryptographic implementation used, and by looking at any measures that enable the

update scheme to switch between vendors. This includes evaluating the considera-

2Depending on what an “IoT device” is defined as in the context of the work, see Section 2.1 for
more information on how we define IoT device.

26



Chapter 2. Background

tion of long-term cryptography, along with measures that allow the update scheme to

switch between vendors. We then apply the criteria in Table 2.2 for a full comparison

of update schemes against these criteria for longevity.

2.4.1. Criteria for Longevity of Software Update Schemes

With common software update schemes established, we will now introduce our cri-

teria for the longevity of software update systems. In all the aforementioned update

schemes, cryptographic algorithms are used at various stages to ensure that the dis-

tribution of the firmware is confidential, that the firmware is not tampered with, and

that its integrity is upheld during transport. Additionally, cryptographic measures

are used to provide protection against several other potential attacks such as rollback

attacks, fast-forward attacks, and mix-and-match attacks, among many other tactics

that can be employed by adversarial parties [101, 20].

Over time, these cryptographic measures can become increasingly weak due to

evolving attacks. As a result, existing cryptographic algorithms are updated to keep

them safe from evolving attacks. If a cryptographic algorithm is found to be vulnera-

ble, a system should be able to easily and readily switch to a different algorithm. This

concept is referred to as cryptographic agility and cryptographic agility is becoming

increasingly more important for long-term deployments in the post-quantum era [16].

We also focus on the inherent single point of failure that all of these update schemes

have in common: the creator of the software. The software creator is usually the

27



Chapter 2. Background

vendor who manufactures a given device, if they cannot provide support for any

reason, then a device will no longer receive software updates. The implications and

analysis of this problem are discussed further in Chapter 4.

The themes of ensuring cryptographic and vendor longevity are important, however,

they are not the only major themes of longevity. The criteria that we present below

are non-exhaustive; however, this initial outline of agility criteria serves as a starting

point for focusing on the gap in this research area.

Specification of cryptographic implementation: Does the specification or pro-

posal leave the cryptographic algorithm choices up to the vendor as an implementation

detail, or is there specific advice on which cryptographic algorithms to use? A in-

dicates that there are algorithms specified, and a indicates this is up to the adopter

of the update scheme.

Cryptographic Agility: Does the specification or proposal consider the implications

of cryptographic agility? Over time, vulnerabilities and exploits will be developed for

leading cryptographic algorithms which further weaken them; cryptographic imple-

mentations and algorithms need to be updated to remain secure. Thus, if an update

scheme is using cryptographic algorithms to ensure confidentiality, authenticity, or

integrity, of updates, then a lack of consideration of this over long-term periods may

further weaken the update scheme. A indicates consideration of cryptographic

agility, a indicates mention of cryptographic agility, and a indicates no consid-

eration of the problem whatsoever.

28



Chapter 2. Background

Vendor Delegation: Can the specification or proposal handle multiple entities that

support a single IoT device? Specifically, if an update scheme has any particular

entity as the only entity that can distribute firmware for a device, this creates a single

point of failure that cannot be handled by the update scheme itself. An indicates

that the specification can handle multiple entities redundantly supporting a single

device, alleviating single points of failures on a single vendor. A indicates that

the update scheme supports multiple entities building components but a single entity

is still responsible for distributing firmware, and a indicates no forms of vendor

delegation are considered, thereby indicating the scheme is single-vendor only.

Vendor Agility: Vendor agility can be thought of as a type of vendor delegation,

where no entity manages the delegation. In other words, full vendor agility implies

that the IoT device can autonomously select a vendor that is actively supporting it in

a decentralized manner, whereas vendor delegation may be accomplished through a

centralized system. A indicates that vendor agility is supported, and a indicates

that there is no consideration of vendor agility.

29



C
hapter

2.
B
ackground

Update Scheme
Specification of
cryptographic
implementation

Cryptographic
Agility

Vendor
Delegation Vendor Agility

SUIT [81]
TUF [101]

LWM2M [74]
ASSURED [13]
UpKit [68]
Baton [17]

Table 2.2.: Comparison of software update for IoT devices, we compare our preliminary criteria
for longevity of a software update system. Criteria involving cryptography analyze the
overall security of a software update system over long periods of time, and criteria
involving the software vendor analyze the potential point of failure of a single vendor
system.

30



Chapter 2. Background

2.4.2. Longevity Comparison of Software Update Schemes

We present our comparison of the longevity of software update schemes in Sec-

tion 2.3.2 against our criteria from Section 2.4.1 in Table 2.2. In Table 2.2 we list

SUIT as one of the most complete update schemes for longevity as it meets (albeit

partially) most of our criteria. However, there is still room for SUIT to improve.

Listed below are the shortcomings of SUIT relative to our criteria:

• For specifying a cryptographic implementation, the main RFC associated with

SUIT3 does not specify cryptographic algorithms or criteria for selecting crypto-

graphic algorithms, aside from noting that the system integrators should choose

them carefully [81]. However, a relatively new draft for a follow-up RFC does

have clear requirements for what cryptographic algorithms should be used in

specific use cases [79]. The draft is incomplete and is also a working document,

thus we consider this a partial effort for meeting the criteria.

• For consideration of the implications of long-term cryptography, IETF SUIT

also only partially has a solution for this. IETF SUIT mentions that algorithms

should be chosen carefully and that one of the worst-case estimates for quantum-

accelerated key extraction is 2030 [81, 62]. However, SUIT does not have any

required measures for cryptographic agility, which is thought to be one of the

main ways of ensuring that legacy cryptographic algorithms get phased out as

3RFC9019

31



Chapter 2. Background

they become weaker and more vulnerable.

• For vendor delegation, the general architecture of IETF SUIT allows authors

from different entities to distribute firmware to a firmware server. This means

that a vendor can hypothetically allow other vendors to develop and push

firmware updates for IoT devices, somewhat alleviating a single point of failure

from relying upon a single vendor.

• For vendor agility, IETF SUIT does not allow devices to autonomously change

firmware servers. Thus, nothing is met here.

The Update Framework (TUF) does not fully meet our criteria, mainly because it

wasn’t explicitly designed with long-term viability in mind [101].

On the other hand, Lightweight M2M (LWM2M) presents a more comprehensive

set of protocols, encompassing not only IoT software updates but also various other

aspects of IoT device lifecycle and functionality [74]. This makes it a valuable option

for IoT ecosystems.

An interesting solution is the Architecture for Secure Software Update of Realistic

Embedded Devices (ASSURED) by Asokan et al. which is built upon the founda-

tions of TUF [101] and Uptane [64]. Designed for the automotive sector, it allows

multiple stakeholders to collaboratively develop and distribute firmware, with a single

separate entity handling firmware distribution [13]. This approach seems promising

for the specific challenges faced in the automotive industry, as it allows for multiple

32



Chapter 2. Background

stakeholders to integrate intellectual property on a single ECU.

UpKit by Langiu et al. also shows promise, particularly in the area of vendor

delegation, as it offloads the responsibility of firmware distribution to a separate

entity. This alleviates a single point of failure from the device vendor but adds a new

single point of failure to the firmware distributor [68].

As for Baton by Barrera et al., though initially intended for Android applications,

it does possess a well-defined set of cryptographic algorithms. Furthermore, it can

perform vendor delegation by using multiple copies of signatures for apps, allowing

vendors to delegate responsibilities under specific circumstances. It’s worth noting

that this delegation capability was not an original design requirement for Baton [17].

Overall IETF SUIT is the most complete and would be an attractive candidate for

expansion. We discuss how update schemes for IoT can be modified and extended to

meet our criteria for longevity in Chapter 4.

To summarize: the problems of longevity in IoT devices we discussed in Chapter 1

can be tackled using continuous software updates to ensure the IoT devices can keep

up with the evolving technological landscape it is surrounded by. However, when we

look at software update schemes for IoT devices (and even software update schemes

beyond IoT) we find factors of longevity are rarely considered. The criteria we estab-

lished are high-level and non-exhaustive but serve as a starting point to embark on

improving the longevity of IoT device ecosystems.

While our analysis covers schemes that are analyzed by the broader IoT research

33



Chapter 2. Background

community, this does not mean that these schemes are being used in practice. To

further our understanding of software update systems in IoT, we delve into the current

landscape in Chapter 3. We aim to gain valuable insight into the state of software

update systems in real-world IoT devices.

Our analysis also does not cover any solutions for the problems of longevity in

IoT devices. It is largely understandable that of the update schemes that consider

what happens when a vendor needs to delegate authority it is marked as out of scope

of the update framework itself. In Chapter 4, we dive deeper into the problem of

longevity and attempt to design a high-level architecture that can solve the challenges

of longevity that we previously discussed.

2.5. WebAssembly

In Chapter 5 we implement a platform-independent runtime for IoT devices to demon-

strate the feasibility of the vendor agility model presented in Chapter 4. Specifically,

we implement a WebAssembly runtime. In this section, we present relevant back-

ground information for that chapter.

All WebAssembly binaries take the form of a module, which acts as a top-level

container for everything contained within it [98, 53]. Modules contain a list of sections

that declare definitions functions, memories, tables, global variables, and static data.

These definitions can then be exported for use externally, and similarly, definitions

34



Chapter 2. Background

can be imported from outside sources.

For a WebAssembly runtime to execute a module, it must be instantiated. The

process of instantiating a module involves providing definitions for all imports, vali-

dating the WebAssembly module, and creating the state of the WebAssembly Virtual

Machine (VM) based on what is declared in the module. Code inside a WebAssembly

module is organized as a vector of functions [98]. Functions can be called by other

functions within the module or can be exported to be called externally.

To enable efficient execution, WebAssembly employs a stack-based virtual machine

(VM) model. This means that computations are performed by manipulating values

on a stack rather than using registers. WebAssembly instructions operate on these

values, performing operations such as arithmetic, control flow, and memory accesses.

WebAssembly also provides a linear memory model, allowing modules to allocate

and access a contiguous block of memory. This memory can be used to store data and

facilitate interactions between WebAssembly and the host environment. The module

can define memories and specify their initial and maximum sizes.

In addition to functions and memories, WebAssembly modules can declare tables,

which are essentially arrays of references. Tables enable efficient indirect function

calls, where the target function is determined dynamically at runtime. By using

tables, WebAssembly can provide support for dynamic dispatch and function pointers.

WebAssembly modules can also define global variables, which are mutable values

shared across functions within the module. Global variables can store various types

35



Chapter 2. Background

fn cube(n: i32) -> i32 {
n.pow(3)

}

(func $cube (param i32) (
result i32)
local.get 0
local.get 0
i32.mul
local.get 0
i32.mul)

Figure 2.2.: Example Rust function (left) with WebAssembly text representation
(right). The toy example of a cube function on the left simply raises
its argument n to a power of 3. The equivalent WebAssembly function
accomplishes this by multiplying the argument by itself times.

of data, such as integers, floats, or references. However, it’s important to note that

global variables should be used sparingly, as their misuse can lead to performance

issues and/or non-deterministic behavior.

To facilitate communication between WebAssembly modules and the outside world,

the module can define imports and exports. Imports are declarations of entities

(functions, memories, tables, or globals) that the module requires from the hosting

environment. Exports, on the other hand, make selected entities within the mod-

ule accessible to the hosting environment. This mechanism enables WebAssembly

modules to interact with the surrounding ecosystem, making them versatile building

blocks for various applications.

WebAssembly modules can be created from several commonplace languages, such as

Rust, C, and C++, among many others. The common thread between most languages

36



Chapter 2. Background

that compile to WebAssembly is they are strongly typed4, which is a requirement for

a WebAssembly compiler as it must be able to emit the correct types when creating

WebAssembly. In Figure 2.2 we show an example function in Rust alongside the

WebAssembly emitted in WebAssembly Text format (WAT). Note that WebAssembly

is a binary format, and WAT is equivalent to the textual format of the binary, similar

to how assembly language is the textual format to machine code instructions.

4Some projects compile weakly-typed languages, such as JavaScript, to WebAssembly. Such
projects make use of extensive type annotations in source code and compile-time checks to enable
the possibility of compiling to WebAssembly.

37



Chapter 3.

Software Updates in IoT: An

Empirical Study

Software updates are critical for ensuring systems remain free of bugs and vulnera-

bilities while they are in service. While Internet of Things (IoT) devices are capable

of outlasting desktops and mobile phones, their software update practices are not

yet well understood, despite a large body of research aiming to create new method-

ologies for keeping IoT devices up to date. This chapter examines efforts towards

characterizing the IoT software update landscape through network-level analysis of

IoT device traffic. Our results suggest that vendors do not currently follow security

best practices, and that software update standards, while available, are not being

deployed.

38



Chapter 3. Software Updates in IoT: An Empirical Study

3.1. Introduction

Consumer Internet of Things (IoT) devices have gained significant popularity in re-

cent years, resulting in a revolution of IoT devices used in many applications. IoT

devices are typically resource-constrained and require specialized operating systems

and software stacks depending on their application [21]. Due to the unique resource

constraints of IoT devices, device vendors have to either design their software update

infrastructure and supporting applications from scratch or use an integrated third-

party solution1 which has historically shown to be inconsistent and vulnerable [122].

Software update systems are well understood and widely available on general-purpose

computers and servers [20]; however, there is little insight and research into how these

vendor-specific IoT software update systems work due to a lack of standardization in

the IoT space [123, 23]. The goal of this chapter is to characterize how typical con-

sumer IoT devices query for and retrieve software updates, and evaluate the security

of these techniques as used by prominent IoT vendors.

As discussed in Chapter 1 a unique challenge for deployed IoT devices is their

expected lifespan. Typical personal computers have a relatively short lifespan com-

pared to an IoT device, which is expected to behave in an appliance-like fashion with

minimal (if any) downtime. Personal computers may get replaced in 5-10 years if

the hardware cannot keep up with current software demands. In contrast, an IoT

1Such as Microsoft Azure IoT, or Amazon Web Services IoT.

39



Chapter 3. Software Updates in IoT: An Empirical Study

device such as a smart thermostat may be expected to run for decades before being

replaced. With the constant evolution of technology, device vendors have the ad-

ditional challenge of providing a secure implementation of their software on legacy

devices.

We hypothesize that suboptimal update intervals from IoT device vendors may

further weaken IoT update systems. For example, device libraries such as the crucial

OpenSSL library were analyzed during a study of 122 IoT device firmware files, which

revealed several vendors failed to patch OpenSSL in their IoT devices after critical

vulnerabilities were released [125]. Device vendors took months to supply an updated

system image with a patched OpenSSL version, and one vendor took nearly 1,500

days to patch the critical vulnerability. Failing to update critical libraries causes

these devices to gain a larger attack surface that could potentially be leveraged by

bad actors to trick the device into downloading malware [117] or to bypass security

measures that are in place to prevent the device from loading modified firmware [40,

23].

In recent years, there have been many proposals for secure software update systems

that are designed for IoT [27, 55, 125] and related cyber-physical systems [64, 86];

however, there is no research (to our knowledge) aiming to broadly understand the

IoT software/firmware update landscape in consumer IoT devices.

Our primary focus is identifying software updates being requested and taking place.

The benefits of this can be leveraged in various contexts: Network-level update de-

40



Chapter 3. Software Updates in IoT: An Empirical Study

tection can be used as independent feedback to end users that their devices are being

updated regularly – an IoT device vendor may promise to publish security patches

for their IoT devices, but not deliver on that promise [125]. In an enterprise context,

administrators may want to apply the principle of least privilege to fleets of IoT de-

vices. Certain IoT devices do not need continuous access to the open internet as most

devices can function exclusively with Local Area Network (LAN) connectivity to a

central hub or other devices. The only edge case to this is checking for updates and

downloading them. If an active firewall can detect update-related traffic from IoT

devices, it can adjust rules to (1) allow the IoT device to download an update from

the internet, and (2) log the update instance.

The research contributions in this chapter are:

• The first in-depth analysis of consumer IoT network traffic to identify software

update communications. We identified design patterns used in several IoT de-

vices and found vulnerabilities that could be exploited.

• A case study of software update schemes and practices that we identified through

our methodology. Devices featured in our case study distribute software updates

over Hypertext Transfer Protocol (HTTP) with no tamper-resistant protection

mechanisms added on. One of the devices identified in the case study provides

a happy medium between update transparency and security.

• An event-based characterization of when IoT devices update. We contextualize

41



Chapter 3. Software Updates in IoT: An Empirical Study

the various conditions that lead to an IoT device performing updates. For

example, power cycling an IoT on is highly likely to trigger an update check.

3.2. Methodology

Our research objective is to understand and characterize how and when IoT devices

perform software updates. To accomplish this, we build a network traffic analysis

system that identifies and analyzes software update requests and responses from IoT

devices. We aim for the system to be vendor-agnostic, requiring no a priori knowledge

about the IoT vendor’s infrastructure or devices. The system should also identify

updates across multiple independent cloud vendors, which are relied upon heavily in

IoT.

To accomplish this, we analyze network traffic from a 2019 Internet Measurements

Conference (IMC) paper by Ren et al. [97] which actively captured traffic from 81

IoT devices. These 81 devices were located in two geographic regions; 46 in the

United States (US), 35 in the United Kingdom (UK), and 26 common devices across

both regions. In total, the dataset contains packet captures from 55 unique devices.

Collected data was harvested at network gateways, but no form of middle-person

attack was done on TLS traffic which precludes peering into an encrypted device

communication. Therefore, in this paper, we rely exclusively on extractable HTTP

42



Chapter 3. Software Updates in IoT: An Empirical Study

traffic for identifying software updates2. Additionally, we harvest metadata from

the TLS handshakes to gain insight into the security of the secure communication

channels used by these devices.

3.2.1. Data Extraction

In total, the dataset of packet captures from Ren et al. is 13 Gigabyte (GB) in

size, which includes 37, 744 packet captures recorded by the automated test system

and 611 unsupervised experiment packet captures, yielding a total of 38, 355 packet

captures. We do not separate traffic by geographic region as Ren et al. found negligible

differences in region-specific traffic [97].

To identify network traffic related to software updates, we hypothesize that update

interactions between an IoT device and vendor cloud follow a structured schema. If

the schema is human-readable (e.g., JavaScript Object Notation (JSON), Extensible

Markup Language (XML), etc.) there will be keywords contained inside indicating

some update-related information, such as a firmware version. We initially searched for

a single keyword “update”, which led us to build a corpus of update-related keywords:

update, upgrade, firmware, software, and download.

These keywords will be the basis we use for identifying update-related traffic; how-

ever, manually searching through files will not scale to the number of devices we have.

2Note that this shortcoming inherently limits our observations of specific update protocols to
devices that do not implement measures to secure communications; our observations may only
be representative of a lower bound of devices.

43



Chapter 3. Software Updates in IoT: An Empirical Study

IoT Dataset 
Individual packet

capture files 

Metadata Extraction 
Experiment, device,

region, etc. 

Metadata DB

HTTP Object
Extraction 

Extract HTTP object
data as files 

Keyword Extraction 
Scan extracted

objects for update-
related keywords 

TLS Handshake
Extraction 

TLS cipher suites,
version, etc. 

Worker
Nodes

Packet Capture

Parallel execution
environment

Local Filesystem 

Unit of work

Figure 3.1.: Data extraction pipeline: starting with the IoT packet capture dataset,
we extract metadata for each packet capture to represent a given packet
capture as a unit of work. We process each packet capture in parallel,
extracting HTTP objects to the local filesystem, TLS Handshakes, and
update-related metadata. All extracted metadata is stored relationally in
a metadata database for further analysis, and HTTP objects are stored
on the local filesystem.

44



Chapter 3. Software Updates in IoT: An Empirical Study

Therefore, we developed a parallel network traffic processing pipeline (see Figure 3.1)

that manages network traffic metadata and HTTP object extraction. The pipeline

design is compatible with distributed data processing frameworks such as Apache

Spark, and works on the dataset as follows:

Metadata Extraction: We extract metadata representing the packet capture. This

includes the specific sub-dataset, region, experiment type (e.g., power on, interact

with the device, etc), and device name. The extracted metadata is saved to a meta-

data database and used for later steps in the pipeline.

Parallelization: We parallelize the extraction of metadata and HTTP objects on a

per-packet capture basis. The parallelization is done by assigning each packet capture

to a worker node, and the worker node performs the following steps on each packet

capture individually. In practice a parallelization approach is not needed; however,

passive analysis of a large amount of packet captures warrants the speedup gains of

parallelization.

HTTP Object Extraction: We extract all HTTP payloads from a given packet

capture. The HTTP payload data is of particular interest as it provides us insight

into any files transferred along with any web service interactions.

TLS Handshake Extraction: We then extract TLS client and server hello data

using a modified version of pyshark3. Our modified version of pyshark supports

extracting an extended set of TLS handshake metadata, including the ciphers adver-

3https://github.com/KimiNewt/pyshark

45

https://github.com/KimiNewt/pyshark


Chapter 3. Software Updates in IoT: An Empirical Study

tised in the TLS client hello and server hello handshake. In total, we return a list

containing every TLS handshake, including the TLS version, TLS handshake type,

and a list of cipher suites. The TLS cipher suite data is used to determine if devices

are adequately securing communication channels against TLS-related attacks.

Keyword Extraction: For each of the extracted HTTP objects, we scan for the

aforementioned update-related keywords by performing a case-insensitive search for

all of the keywords. A keyword occurrence flags a packet capture related to a software

update. Counts of keyword occurrences are saved to the metadata Database (DB)

for future analysis.

The data-extraction pipeline operates per packet capture in parallel. On a test

VM with 24 virtual processors, 64 GB of RAM, and a solid-state drive, we were

able to run the extraction pipeline on 38, 355 packet captures in over 60 minutes,

with approximately 10 packet captures processed per second. Without a parallel

approach, our extraction pipeline would have taken over 24 hours to complete.

3.2.2. Data Analysis

Using the metadata that corresponds to the packet capture, we can perform extended

analysis on the packet capture that had been flagged as having update-related traffic.

After identification of these packet captures, we inspect the HTTP response data to

look for any update endpoints or update artifacts. Ideally, we should find no update-

related artifacts in HTTP responses, as this would imply these files are transmitted

46



Chapter 3. Software Updates in IoT: An Empirical Study

over an insecure channel.

Device vendors should be protecting their firmware from being tampered with re-

gardless of the transfer protocol being used: if a vendor uses only TLS to secure

their updates in transit, the compromise of a single cryptographic key is the only

requirement to jeopardize the integrity of the vendor’s update system [101].

Analyzing IoT update interactions by raw traffic can be misleading as it does not

consider the context that triggers a device to update, only that the device checked

for an update. To further characterize update interaction, we look at event-related

information to provide more context to the various conditions that cause IoT devices

to update. All the packets captured from the Ren et al. study are labeled with

various event-related information such as power events, app interaction, or idle events.

Therefore, we analyze these crucial pieces of context to correlate events to update

activity. For example, if an IoT device checks for an update when powered on, an

adaptive firewall can use temporal data of an IoT device’s network connectivity to

provide more context to classify if an IoT device may be requesting and applying a

software update.

Finally, we extract and analyze all TLS handshake data from all the packet cap-

tures (independent of update keyword traffic) to assess the overall strength of the

communication channels in use. Our methodology only allows us to perform ex-

tended analysis on unencrypted traffic; however, if IoT devices send all of their traffic

over an encrypted medium, it is a reasonable assumption that the devices will also

47



Chapter 3. Software Updates in IoT: An Empirical Study

perform firmware updates over these encrypted connections. If the TLS implementa-

tion on the IoT device is outdated or insecure, this will undermine the overall security

of the IoT device, including the software update system. Whether TLS is explicitly

or implicitly chosen for a design, using TLS is a design choice for IoT update systems.

Considering the historical vulnerabilities associated with TLS, the use of outdated

TLS versions can negatively harm device security and longevity [66].

To interpret the set of cipher suites advertised between clients and servers, we

converted the cipher suite’s hexadecimal value to the Internet Assigned Numbers

Authority (IANA) cipher suite name by leveraging a cipher suite information Ap-

plication Programming Interface (API) [99] which aggregates all IANA cipher suites

along with IANA cipher suite security classifications. Cipher suites are then catego-

rized into four buckets: insecure, weak, secure, and recommended. Insecure cipher

suites have easily exploitable security flaws and thus should never be used, while

weak cipher suites may have proof-of-concept vulnerabilities that are more difficult

to exploit in practice. The classes of secure and recommended cipher suites have no

known vulnerabilities, and all recommended cipher suites are a subset of secure ci-

pher suites. The only differentiating factor is that recommended cipher suites support

Perfect Forward Secrecy (Perfect Forward Secrecy (PFS)).

48



Chapter 3. Software Updates in IoT: An Empirical Study

3.3. Results

In this section, we discuss our results in identifying update-related traffic. At the

network level, software updates are difficult to detect if the update communications

are taking place over an encrypted connection. TLS offloading may be an option in

non-IoT contexts; however, attempting TLS offloading on IoT devices will require

physically tampering with the device which may cause erratic behavior [97].

Our HTTP object extraction pipeline extracted HTTP objects from 5,766 of 38,356

packet captures, which is 15% of the packet captures in the dataset. In other words,

85% of packet captures use some form of encryption, or a protocol other than HTTP.

We extracted HTTP data for 35 out of 55 devices4, which is 63% of devices. Originally,

Ren et al. attempted to measure encryption adoption with slightly different results: no

device had more than 75% unencrypted traffic [97]. The key difference in our results

is we focus on extractable HTTP objects, whereas Ren et al. attempted to guess if

certain User Datagram Protocol (UDP) traffic was encrypted or not by measuring

byte entropy, which only concludes if certain packets are likely encrypted [97].

In the following sections, we describe our results for identifying software update

keywords, characterizing software updates based on device interaction, and our TLS

results. These results are summarized as follows:

• 3.3.1: Out of the 35 devices that did not encrypt all traffic, 9 (25%) checked for
4Originally, Ren et al. had 81 devices with 26 common devices between regions, thus 55 unique
devices.

49



Chapter 3. Software Updates in IoT: An Empirical Study

available software updates transparently.

• 3.3.2: IoT devices check for updates during power and idle events, and a small

percentage of devices check periodically (some as often as once per hour).

• 3.3.3: Update endpoints (where software update files are hosted) for devices

in our set exist primarily in 3rd party cloud service platforms, or on content

delivery networks (CDNs), which makes Domain Name System (DNS)-based

identification difficult.

• 3.3.4: TLS is pervasively used in IoT communications, possibly including update-

related traffic. Devices that only use TLS for communication could be vulner-

able to key compromise if there are no additional protections in place [101].

• 3.3.4: The majority of our devices use secure TLS cipher suites which would

not make them vulnerable to TLS downgrade attacks; however, there are de-

vices that support vulnerable TLS cipher suites, which jeopardizes any update

communications made through TLS.

3.3.1. Update Keywords Results

We successfully extracted several HTTP interactions between IoT devices and web

services related to software updates. Our most prominent keyword is update with

1,351 occurrences among extracted HTTP objects, firmware with 639 occurrences,

50



Chapter 3. Software Updates in IoT: An Empirical Study

software with 89, and download appearing only 8 times.

The specific devices and the corresponding keywords they matched are shown in

Figure 3.2b. The heatmap shows the number of occurrences of the keywords in the

rows for the devices in the columns, where a darker blue indicates more occurrences.

We observed that certain devices exchange update-related information much more

often than others, such as the Wemo plug and Phillips hub.

The Wemo plug device had the most occurrences of keywords, which means the

Wemo plug was polling the most frequently for updates; however, this does not imply

there may be a software update in progress. For example, the Wemo Plug exchanges

firmware information in nearly every request which contributes to the high amount of

keyword detection; however, we did not find any proof that the Wemo plug performed

an update during the capture period. There is an update web service offered by the

Wemo plug, which we discuss in detail in Section 3.4.3. By contrast, the Apple

Television (TV) only has a single occurrence of exchanging update-related keywords,

and we found that the Apple TV downloaded system firmware over HTTP, which

would imply that the Apple TV installed the aforementioned firmware, which we

discuss in Section 3.4.2. This contrast shows that our heuristic does not guarantee

a device is performing an update, but it is enough to detect traffic that might be

update related.

Aside from being able to detect firmware downloads in real-time, an unexpected

result from our heuristic was it picks up current updates and firmware versions in

51



Chapter 3. Software Updates in IoT: An Empirical Study

7 of the 9 devices. This is because these 7 devices report their firmware version

as an HTTP request, or as part of a service discovery response. This is valuable

information for both defensive and offensive applications. A potential application for

this in defensive security is an active firewall appliance that can scan IoT devices and

fetch firmware versions from them, if a Common Vulnerabilities and Exposures (CVE)

is released for that particular firmware the firewall can automatically quarantine the

affected devices. This assumes that the firmware version is accurately reported, which

may not be the case for malicious devices. For offensive security applications, an

attacker could perform reconnaissance by identifying vulnerable firmware versions of

devices that actively advertise these versions.

52



C
hapter

3.
Software

U
pdates

in
IoT

:A
n
Em

piricalStudy

Po
we

r E
ve

nt
s

Id
le

 E
ve

nt
s

An
dr

oi
d 

In
te

ra
ct

io
n

Al
ex

a 
In

te
ra

ct
io

n

Interaction Event

fir
m

wa
re

up
da

te
so

ftw
ar

e
do

wn
lo

ad
De

te
ct

ed
 K

ey
wo

rd

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f o
cc

ur
re

nc
es

(a) Update keyword occurrences by interaction
event. A darker color indicates a higher
percentage of occurrences. In the original
study [97] there were 9 different Alexa interac-
tion events, and 4 android interaction events,
which we chose to merge into a single group
for readability.

Am
cr

es
t C

am
er

a

Ap
pl

e 
TV

D-
Lin

k 
Se

ns
or

LG
 T

V

Ro
ku

 T
V

Sa
m

su
ng

 T
V

Ph
ilip

s D
ev

ice
 H

ub

W
eM

o 
Pl

ug

Al
lu

re
 S

pe
ak

er

Device Name

fir
m

wa
re

up
da

te
so

ftw
ar

e
do

wn
lo

ad
De

te
ct

ed
 K

ey
wo

rd

13 6 10 8 602

1 12 227 509 602

1 76 6 6

1 6 1 100

200

300

400

500

600

Co
un

t o
f o

cc
ur

re
nc

es

(b) Count of detected update keywords aggre-
gated by device as a heatmap, where the num-
ber in the square corresponds to the number
of keyword usage occurrences were found.

Figure 3.2.: Our results for update keywords by device and interaction event.

53



Chapter 3. Software Updates in IoT: An Empirical Study

3.3.2. Update Events Results

Our results for event-related update activity are shown in Figure 3.2a. The heatmap

shows the number of update keyword occurrences in the rows for the interaction

event in the columns, where a darker color indicates more occurrences. Due to the

granularity of the experiments from Ren et al., Android-related events (e.g., taking a

photo, controlling a device from an app, etc.) and Alexa interactions (e.g., invoking

Alexa, changing color, etc.) were merged into two respective categories. Aside from

these events, all 9 of the IoT devices in Figure 3.2b exchange update-related keywords

on power events, and even more on idle events. Examples of update traffic events

include devices reporting their firmware version to an update service, then receiving

an update response in return.

When idle, we found some IoT devices that exchange update-related traffic between

one another. This is out of the ordinary, as independent IoT devices should not be

issuing or exchanging update commands to one another when idle – these commu-

nications should only occur between the device and the vendor’s update platform.

We investigated these inter-device occurrences and found that as part of service dis-

covery protocols (e.g., Simple Service Discovery Protocol (SSDP), UPnP) there is an

exchange of firmware information. Certain devices even advertise endpoints for in-

voking update behavior manually which is ripe for exploit by bad actors or rogue IoT

devices. Refer to the WeMo case study (Section 3.4.3) for more information regarding

these endpoints.

54



Chapter 3. Software Updates in IoT: An Empirical Study

Other than power and idle events, Alexa interaction events contribute the most to

our heatmap. Alexa devices do not exchange detectable update-related traffic; how-

ever, the Philips hub exchanged update-related information when being controlled by

Alexa. Additionally, the Roku TV, Samsung TV, and Wemo plug exchanged update-

related data when controlled remotely by Android interaction events. We believe

there is no correlation between these interactions and update traffic: these devices

exchange the same information when not being controlled by Alexa or Android.

3.3.3. Observed Update Design Patterns

We analyzed the extracted HTTP interactions flagged as being update-related to

attempt characterizing common designs or behaviors between device vendors. Unfor-

tunately, we observed no common architecture or strategy was used between the 9

devices we identified. This can largely be attributed to the lack of vendor coordina-

tion in the IoT space, where vendors create their own update schemes rather than use

(or adapt) solutions from industry standards or other vendors. The heterogeneity of

the designs and schemas involved provide great motivation for standardized update

system designs, such as RFC 9019 and RFC 9124 [81, 80]. While there is no common

schema among different device vendors, we noticed some common patterns among

certain device manufacturers.

No Security : The D-Link movement sensor, Amcrest camera, and Wemo fetch

firmware update metadata from a web service that returns a complete Uniform Re-

55



Chapter 3. Software Updates in IoT: An Empirical Study

source Locator (URL) for downloading the firmware image. What is concerning about

this is there is no tamper-protection in place for any of these devices. To make mat-

ters worse, both of these devices fetch data from public S3 bucket endpoints over

HTTP. We examined firmware images served through these endpoints and found no

forms of tamper-protection such as checksums, digital signatures, or authentication

built into the firmware.

Out-of-band Security : While insecure device update schemes are certainly con-

cerning, there are update techniques that allow authentication and integrity verifica-

tion even over HTTP. The Apple TV exchanged all update-related traffic over HTTP,

including web service interactions for downloading the firmware and related metadata.

What sets the Apple TV apart is it exchanges digital signatures and certificates over

HTTP to validate the responses. Apple’s design provides a happy medium of ensuring

the integrity (assuming the signatures and certificates are validated) of the update

through cryptographic means while giving us insight into specific details that can be

leveraged by a network appliance, such as specific firmware and information assuming

that the network appliance can parse the XML schema Apple uses.

Full TLS : The remaining devices encrypted all cloud-destined communications using

TLS. It is reasonable to expect that, if implemented, a software update mechanism

would also use one of the available TLS channels. While communication encryption

is advantageous for security and privacy, we believe transparency in software up-

date implementations (perhaps implemented with an out-of-band scheme as described

56



Chapter 3. Software Updates in IoT: An Empirical Study

above) can be beneficial for providing transparency and security, as we described in

Section 3.1. Additionally, we note that exclusive reliance on TLS for software updates

is known to be insufficient in protecting against many update-specific attacks [101].

3.3.4. Cipher Suite Results

We see a larger amount of devices with extractable TLS cipher suites, which is ex-

pected as many IoT devices use TLS as a means of interacting with the web services

they depend on. In Figure 3.3 we observe there were a total of 16 insecure cipher

suites used between IoT devices. All 16 cipher suites have significant vulnerabilities

that when combined with a downgrade attack could allow an attacker to perform a

Machine-in-the-Middle (MITM) attack; however, among the 24 devices that advertise

insecure cipher suites, we estimate 4 of them would be vulnerable to a downgrade

attack. This is because the secure and recommended cipher suites would take prece-

dence over the weak and insecure cipher suites, and the cipher suites contained in

secure and recommended classes contain measures to prevent downgrade attacks.

We have only discussed the TLS cipher suites in the context of IoT devices. To see

these results in perspective to other applications that require secure communication,

we searched for a dataset of TLS cipher suite support in web browsers. While we

did not find a comprehensive dataset that summarized recent browsers, we did find

a service that provides us with what our browser supports [95]. Using this service,

we found modern browsers (Firefox 94, Chromium 96) support far fewer cipher suites

57



Chapter 3. Software Updates in IoT: An Empirical Study

with none of them being marked within the insecure category – although roughly half

of the cipher suites supported were deemed to be “weak”. This can offset the large

number of IoT devices that offer “weak” cipher suites, which may be present solely

for backward compatibility. Although these weak cipher suites in IoT devices do not

significantly increase the attack surface compared to modern web browsers, they can

still pose security risks when not using TLS 1.3.

58



C
hapter

3.
Software

U
pdates

in
IoT

:A
n
Em

piricalStudy

Al
lu

re
 S

pe
ak

er
Am

az
on

 C
lo

ud
ca

m
Am

az
on

 E
ch

o 
Do

t
Am

az
on

 E
ch

o 
Pl

us
Am

az
on

 E
ch

o 
Sp

ot
Am

az
on

 Fi
re

 T
V

Am
cr

es
t C

am
er

a
Ap

pl
e 

TV
Be

hm
or

 B
re

we
r

Bl
in

k 
Ca

m
er

a
Bl

in
k 

Se
cu

rit
y 

Hu
b

D-
Lin

k 
Se

ns
or

GE
 M

icr
ow

av
e

Go
og

le
 H

om
e

Go
og

le
 H

om
e 

M
in

i
Ho

ne
yw

el
l T

he
rm

os
ta

t
In

st
eo

n 
Hu

b
In

vo
ke

 w
ith

 C
or

ta
na

LG
 T

V
Ne

st
 T

he
rm

os
ta

t
Ph

ilip
s D

ev
ice

 H
ub

Ri
ng

 D
oo

rb
el

l
Ro

ku
 T

V
Sa

m
su

ng
 D

ry
er

Sa
m

su
ng

 Fr
id

ge
Sa

m
su

ng
 T

V
Sa

m
su

ng
 W

as
he

r
Se

ng
le

d 
Hu

b
Sm

ar
tT

hi
ng

s H
ub

Sm
ar

te
r C

of
fe

e 
M

ac
hi

ne
Sm

ar
te

r i
Ke

ttl
e

TP
-L

in
k 

Bu
lb

TP
-L

in
k 

Pl
ug

W
eM

o 
Pl

ug
W

in
k 

Hu
b 

2
Xi

ao
m

i C
am

er
a

Yi
 C

am
er

a
Zm

od
o 

Do
or

be
ll

IoT Device

0

25

50

75

100

125

150

175
Co

un
t o

f C
ip

he
rs

 in
 G

ro
up

secure
recommended
weak
insecure

Figure 3.3.: Count of TLS cipher usage on a per-device basis. Each bar is represented by insecure,
weak, secure, and recommended cipher suites.

59



Chapter 3. Software Updates in IoT: An Empirical Study

3.3.5. Limitations

We found 11 devices that did not have extractable HTTP data or extractable TLS

data. By manually inspecting packet captures we found several devices that stream

data over UDP, which is a consistent finding with the Ren et al. study [97]. The data

was not meaningful, as it was either encoded using some vendor-specific encoding

or a stream of application-specific data (e.g., a video stream) that can not easily be

deciphered. While these edge cases are technically possible to extract, it is challenging

to do so at scale given the wide breadth of devices and a large amount of packet

captures.

A limitation of our study is TLS encrypted traffic, which is consistent with other

large scale IoT analysis papers [94, 91]. A potential workaround for TLS-encrypted

edge cases is an alternative heuristic: for example, another approach that is agnostic

to the protocol in use is to look at response sizes. If a device exchanges a large amount

of data in a short burst, assuming that this burst of traffic is abnormal for the device

based on regular behavior, is not ideal as there is no way to verify if traffic is update-

related – this only identifies large bursts of abnormal traffic. Furthermore, even if

we could deduce that encrypted traffic is a device update, there is no meaningful

extractable information from an encrypted payload such as firmware version which is

crucial to our motivation for detecting IoT software updates.

Additionally, our results derived from HTTP traffic are not representative of all

IoT devices. This is due to the majority of IoT devices using TLS, thus our results

60



Chapter 3. Software Updates in IoT: An Empirical Study

and case study derived from non-TLS traffic is representative of devices that are

not attempting to follow security best practices. As a result, the practices of the

majority of IoT devices could be misrepresented due to the results obtained from the

lower-security minority of devices.

Another potential heuristic is to analyze traffic patterns temporally. O’Connor et

al. developed a simple yet effective methodology for classifying various IoT subsys-

tems without any form of decrypting or inspecting packet payloads, instead opting

to analyze traffic frequency and size over a long period of time [89]. This tempo-

ral approach proved effective for identifying IoT device telemetry, and in an active

measurement context, O’Connor et al. were able to derive various attacks based on a

temporal analysis of IoT device traffic. While this approach is novel, it is not ideal

for a large-scale passive analysis of traffic.

Regarding the keyword-based analysis, our heuristic which associates terms such

as “firmware” and “software” to update-related events can produce false positives.

For example, some devices report a current firmware version to a web service con-

tained as an HTTP payload. While this is not an update request, our pipeline will

flag it as such and require manual removal. Future work will investigate the use of

additional heuristics to improve the accuracy of identification of updates without re-

quiring manual verification. Adding checks for outbound traffic, inbound traffic, and

schema verification would greatly assist in avoiding false positives.

61



Chapter 3. Software Updates in IoT: An Empirical Study

3.4. Case Studies

In this section, we present two case studies detailing software update mechanisms

used in the wild by three major vendors. First, we look at the firmware update inter-

actions from the D-Link Camera, which we use to illustrate harmful practices that

undermine the device’s security. We then contrast this approach with the firmware

update interactions we observed against the Apple TV, which combines several dis-

tinct tamper-resistant mechanisms with update transparency. Finally, we conclude

our case studies with a vulnerable WeMo update service, that allows for unsigned

code to be uploaded from an arbitrary source.

3.4.1. D-Link Camera Firmware

The D-Link camera is an example of the No Security pattern, as it exchanged

firmware update information through HTTP. Based on the identified traffic, we ex-

tracted a firmware update endpoint and also a firmware image. The firmware update

endpoint is a web service that accepts a device model and returns an XML response

containing firmware metadata information along with a URL to the latest firmware

download. We were able to download the latest firmware image as it is being hosted

by a static file store which does not require any prior authorization. The firmware up-

date endpoint does not return any checksum or signature to validate that the firmware

62



Chapter 3. Software Updates in IoT: An Empirical Study

image was not tampered with. Using the binwalk utility5 we analyzed the firmware

image and found the following:

1. A µImage header, indicating that the OS is Linux built for a Microprocessor

without Interlocked Pipeline Stages (MIPS) CPU. This is likely a boot loader

for the next item

2. Lempel-Ziv-Markov chain Algorithm (LZMA) compressed data, likely the kernel

image to be executed by (1)

3. A SquashFS filesystem, which is the root filesystem

The image header indicates that the OS is a Linux Kernel from roughly 2014 (9

years old at the time of writing). Looking at the kernel image (2) we extracted the

image version, which is Kernel version 2.6.31 released in 2009 [110]. While we did not

find any notable CVEs for this particular version (2.6.31 ) of the kernel [75], we did

find CVEs for the parent minor version (2.6 ) which allow for arbitrary code execution

through multiple buffer overflows [41]. It is likely after 2014 the device reached the

end of its “service life”, thus D-Link stopped updating it. This is unfortunately a

fairly common occurrence amongst IoT devices [96].

Theoretically speaking, the D-Link camera is vulnerable to MITM attacks as shown

in Figure 3.4: (1) the communication with the update service is unauthenticated

5https://github.com/ReFirmLabs/binwalk

63

https://github.com/ReFirmLabs/binwalk


Chapter 3. Software Updates in IoT: An Empirical Study

Generic IoT device

Authentic Cloud Provider 

Authentic
Source,

malicious
payload

Malicious Cloud Instance

Figure 3.4.: An example MITM attack scenario that the D-Link camera is vulnerable
to. The attacker would appear as an authentic source that provides a
malicious payload, such as a download link to a modified firmware version
being hosted by the attacker.

64



Chapter 3. Software Updates in IoT: An Empirical Study

and does not have integrity protection; and (2) the communication with the image

repository is unauthenticated and does not have integrity protection. For (1), an

on-path attacker can intercept traffic between the IoT device and the vendor’s cloud.

In this case, the message responded by the vendor’s cloud contains the full URL to

the firmware image being hosted on an S3 bucket (also on HTTP). A second MITM

attack (2) could occur if an attacker intercepts HTTP traffic between the IoT device

and the S3 bucket. With this in mind, it is highly likely an attacker can leverage (1)

to give the D-Link camera the URL of a different S3 bucket hosted on the “malicious

cloud instance” which would then serve the modified firmware. An attacker could

build and distribute modified firmware trivially, as the original firmware file is not

signed, nor does it have any other protection mechanisms in place for the file.

3.4.2. Apple TV Firmware

In a contrast to the D-Link camera, the Apple TV combines transparency in up-

dates with security. The complete update flow of the Apple TV is shown in Figure 3.5.

Similar to the D-Link Camera update metadata is exchanged over HTTP; however,

there are several additional measures to harden communications against attackers.

The Apple TV first connects to an updates repository over HTTP which returns

an XML response containing available updates for that particular device, which is

similar behavior to the D-Link camera. Although the connection for update metadata

65



Chapter 3. Software Updates in IoT: An Empirical Study

Apple TV

Apple Updates
CDN

Fetch available
updatesReturn updates

listing
HTTP Request

Validate
response

certificate and
signature

HTTP Response

Fetch update
filesReturn update

payload

HTTP Request

Unpack payload,
validate signatures,
take cryptographic

measurements

HTTP Response

Apple Updates
Authorization Server 

Validate cryptographic
measurements

Send
measurements for
remote attestationHTTPS Request

Return signature for
software, anti-replay

value, ECID Begin updateHTTPS Response

Figure 3.5.: AppleTV update process between Apple’s content delivery network and
update authorization server. There are two distinct stages to the update
process: first downloading the update bundle via the Apple Updates
CDN, then validating and authorizing the update through remote attes-
tation.

66



Chapter 3. Software Updates in IoT: An Empirical Study

happens over HTTP, we found the API response contains a certificate and signature

field, which is used to validate the response [102]. Parsing the certificate using the

openssl utility [2] we found the following: the certificate was issued by the “Apple

iPhone Certification Authority”, with a common name of “Asset Manifest Signing”.

This suggests that the certificate is purpose-made specifically for signing these update

manifest responses. Additionally, the signature included in the response can be used

to validate the integrity of the response. Unfortunately, the certificate expired in

2018, and the API response indicated updates from as recently as 2020.

When it comes to downloading the update, this communication also takes place

over HTTP using a similar design to the D-Link camera. The Apple TV firmware

repository contains a field that points to a content delivery network (CDN) that

hosts the firmware image. One significant difference is there is a field that contains

a measurement related to the update. Unfortunately, we could not identify how

this measurement is derived; however, we are assuming that if the update file is

downloaded and does not match the measurement, the update is invalid. This is

consistent with Apple’s platform security documentation which details the measures

taken to secure device updates [102].

Using the Apple Repository response, we reconstructed the firmware download URL

and acquired the firmware image for the AppleTV by downloading it over HTTP. The

firmware image is distributed as a ZIP file, which when unpacked reveals a file tree

for distributing software updates. Without having the source code to the software

67



Chapter 3. Software Updates in IoT: An Empirical Study

responsible for performing updates on Apple devices, we are unable to determine how

exactly the update is performed; however, combining an analysis of the directory

tree with prior reverse engineering efforts [12] along with Apple’s platform security

documentation [102] gives us a relatively good understanding of how the update is

performed.

After the AppleTV has validated the update payload, assuming the device-side

verification of the update has no errors, the AppleTV must then perform remote

attestation with the Apple Updates Authorization server to perform the update. Ac-

cording to our packet captures, this communication takes place over Hypertext Trans-

fer Protocol Secure (HTTPS), so we do not have concrete knowledge of what exactly

is being sent. According to Apple’s platform security documentation, cryptographic

measurements of the bootloader (iBoot), kernel, operating system image, and Elec-

tronic Control Identification (ECID) are sent to the update authorization server [102].

The server validates all the measurements sent by the device, and if they are valid,

the update server returns the signature for the software, an anti-replay value, and the

device’s ECID [102].

3.4.3. WeMo Update Service

The Belkin WeMo plug largely communicates using Simple Service Discovery Pro-

tocol (SSDP), which is a protocol used to advertise services and consume them in

68



Chapter 3. Software Updates in IoT: An Empirical Study

a standardized way [7]. SSDP uses HTTP as its underlying communication proto-

col, therefore all SSDP activity was captured by our passive analysis. We observed

among the various device management services listed is one for firmware updates. The

firmware update service advertised two actions: “GetFirmwareVersion” and “Update-

Firmware”. The “GetFirmwareVersion” endpoint takes no arguments and returns a

firmware version string. The “UpdateFirmware” endpoint takes several arguments

including “NewFirmwareVersion”, “ReleaseDate”, “URL”, “Signature”, “Download-

StartTime”, and “WithUnsignedImage”. Particular arguments of interest to an at-

tacker would be the “URL” and “WithUnsignedImage” fields, which indicate that the

endpoint accepts arbitrary URLs along with being able to accept unsigned firmware

images.

We, unfortunately, cannot test the viability of uploading arbitrary firmware to

the WeMo device as we are only passively analyzing packet captures; however, our

research into the aforementioned update service shows previous efforts have proven

to be successful in exploiting the WeMo device6 [32]. An attacker could have a local

(or remote) firmware repository, and upload a modified firmware image to the WeMo

device. The WeMo device would then attempt to download the modified firmware

image and install it, similar to what we show in Figure 3.4. The only difference

between the exploit used in the D-Link camera and the WeMo plug is the attacker

6Since the discovery of these vulnerabilities in 2013 WeMo has patched affected devices. Due to
the vulnerability being remediated, we did not report our findings to WeMo.

69



Chapter 3. Software Updates in IoT: An Empirical Study

has the ability to trigger device update behavior by interacting with an endpoint,

whereas the D-Link camera has no such functionality.

3.5. Related Work

To our knowledge, this is the first work attempting to analyze and characterize how

consumer IoT devices perform software updates at the network level. There have been

recent works focusing on the different network-level analysis of IoT devices: Prakash

et al. analyze the update practices of IoT vendors by tracking software versions listed

in the user-agent header included in HTTP requests made by IoT devices [94]. The

conclusions found by Parakash et al. do not characterize and analyze how IoT update

systems work, rather, they conclude that IoT device vendors are slow to update their

devices when new vulnerabilities are found.

We identified pervasive use of TLS, which precludes the identification of update-

related traffic without additional data analysis. Related work here includes Alrawi

et al., who provide an excellent Systematization of Knowledge (SoK) of the overall

security of home IoT devices by systematizing the current state (as of 2019) of IoT

vulnerability literature and then evaluating 45 devices, a subset of the security eval-

uation involves looking at various encryption qualities that would make the device

vulnerable [9]. More recently in 2021, Paracha et al. performed a deep dive into IoT

TLS usage patterns which ultimately found 11/32 IoT devices are vulnerable to in-

70



Chapter 3. Software Updates in IoT: An Empirical Study

terception attacks [91]. If IoT devices are relying on TLS to secure communications

to backend APIs and endpoints for software updates, any vulnerabilities in the TLS

transport layer will undermine the overall soundness of how these devices perform

updates.

An encouraging finding is the high amounts of TLS usage among devices; however,

there is a caveat to this high TLS usage: it is only one line of defense. If a private

key is compromised, this could jeopardize the integrity of update-related services if

there are no additional lines of defense. Samuel et al. present a novel design for an

updated system that allows for key compromise in update systems [101].

Due to the previously discussed challenges, there are several opportunities to ex-

plore and innovate IoT software update designs. Related work in this space consists

of proposed designs for IoT update systems relating to firmware updates and library

management. Zandberg et al. present a prototype for a firmware update system on

IoT devices by leveraging various open-source libraries and standards [123]. Zand-

berg et al. leverage SUIT, a new IETF standard that provides encrypted firmware

update files with encryption keys provided by hybrid public-key encryption [114]. The

SUIT standard appears as if it may not work on resource-constrained IoT devices,

but Zandberg et al. have their reference implementation built on IoT devices with

less than 32 Kilobyte (KB) of RAM and 128 KB of storage [123].

71



Chapter 3. Software Updates in IoT: An Empirical Study

3.6. Conclusion

Using a passive measurements approach and a dataset from one of the largest IoT in-

formation exposure studies to date [97] we identified and characterized several design

patterns used by IoT devices to perform updates. There is no common schema or

design pattern behind various update systems, which provides additional motivation

for standardizing IoT software updates [81]. Additionally, we characterized events

related to when an IoT device may update, which is useful for building data-driven

models for real-time update identification. In our analysis of update systems, we

found vulnerable devices that provide no mechanisms for securing firmware updates.

We observed that many devices use encrypted connections to secure communications:

60% of devices support insecure TLS cipher suites, while 10% of devices in our dataset

are vulnerable to downgrade attacks.

Our findings from this study paint a concerning picture regarding industry practices

that impact the longevity of IoT devices. There are no discernible standards in

use within the industry, and several instances of insecure cryptography, or even no

cryptographic measures at all. Overall, this chapter has raised serious doubts about

the long-lasting nature of current products and systems. The remaining chapters

will delve into other potential barriers to longevity, as indicated by the identified

shortcomings. The importance of software updates in the long-term maintenance

and support of devices should not be underestimated. This chapter has shed light on

72



Chapter 3. Software Updates in IoT: An Empirical Study

the existing opportunities for improvement in this crucial area.

73



Chapter 4.

Extending IoT Device Longevity

Internet of Things (IoT) devices are increasingly being treated as disposable, becom-

ing unsupported shortly after deployment and ending up in landfills prematurely. IoT

manufacturers lock devices to their ecosystems and prioritize the development of new

devices over the support of legacy product lines. This chapter argues that a paradigm

shift is needed to increase IoT device longevity. We review the unique challenges that

IoT manufacturers face in extending device lifetimes, and identify software and secu-

rity updates as a key requirement for device longevity. We propose a new IoT device

software stack and lifecycle that allows devices to continue safe operation even after

the vendor disappears. While we recognize that the sustainable design and manage-

ment of IoT devices is a complex sociotechnical problem, we hope that the ideas in

this chapter helps guide future discussions on this important topic.

74



Chapter 4. Extending IoT Device Longevity

4.1. Introduction

Research papers discussing the Internet of Things (IoT) often begin by citing IoT

device deployment projections to highlight the current pervasiveness and growth tra-

jectory of the industry. “double in size within the next four years” [69], “75 billion by

2030” [103], “a whooping trillion connected devices by year 2035” [65]. What these

papers fail to discuss is the proportion of these IoT devices that will end up in landfills

prematurely.

Our planet is facing a significant e-waste problem, exacerbated by the rapid end-

of-life and deprecation of IoT devices [57, 58]. Consumers acquire these inexpensive

devices and install them in their homes, only to discover that the device is only

supported by the vendor for a short period (typically 1-2 years) [92, 36]. Once this

support period is over, devices no longer receive feature updates and – more impor-

tantly – security updates. As a result, many of these devices are perceived as no

longer useful or functional after a relatively short period of time, contributing to the

growing global e-waste crisis [51].

Does this mean that IoT devices cannot be designed and built to last as long as

their analog counterparts? In other words, is it even possible to design an IoT device

that remains in operation and useful for over 25 years? A cursory look at the internals

of some off-the-shelf IoT devices reveals that the hardware is generally up to the task

of durability. Solid-state internal components are rated for several decades, with

75



Chapter 4. Extending IoT Device Longevity

flash storage being one of the main components that wear out over time, followed by

mechanical actuators that enable the device to interact with the physical environment

(e.g., relays, servos, etc.). Broadly speaking, engineering embedded hardware that

lasts decades is feasible1, but what about the software?

Writing long-lasting software for embedded devices is also feasible, and indeed the

industry has been doing this for a long time. Embedded systems have been integrated

in consumer appliances and electronics for several decades, well before the IoT revolu-

tion. Embedded systems have also been heavily utilized in various sectors, including

automotive, manufacturing, and healthcare. The challenge arises when developers are

tasked with writing long-lasting software for an embedded device that requires use of

the internet. A substantial increase in complexity occurs when internet connectivity

is brought into scope: evolving network protocols, bugs in cryptographic algorithm

implementations, and changes to APIs of external services forces IoT devices to be

updated [6], or stop working and get thrown out.

This (sometimes unintentional) programmed obsolescence in IoT software requires

a new paradigm to solve. Users cannot be expected to keep track of which critical

network libraries are no longer updated on their devices, and solder serial jumpers

onto their devices to flash unofficial fixes. Vendors cannot be expected to maintain

devices indefinitely as this fundamentally conflicts with their business models. We

1We recognize that engineering hardware designed to withstand harsh environmental conditions
(e.g., weather, high-impact, military environments) is much more challenging. Our scope herein
is focused on the gentler environment of a modern home.

76



Chapter 4. Extending IoT Device Longevity

cannot legislate permanently secure code into existence. Open-source software and

hardware does not magically address this issue either; while access to the source code

helps third-party maintainers write new code for abandoned devices, allowing a third

party to overwrite the software on a device is indistinguishable from an attack [60].

In this chapter, we argue that the lack of long-term support for IoT software di-

rectly contributes to the global e-waste crisis and that a radically different approach

is needed to keep functional IoT devices out of landfills. Our position is that if a

device requires internet connectivity, it will inevitably become non-functional and/or

vulnerable over time. While users may not immediately notice that their device is

vulnerable, they are more likely to notice the disappearance of features and function-

ality. A unique challenge in achieving long-term updates is that the IoT device may

outlast the manufacturer, and thus all technical means for designing, building, and

distributing an update may be destroyed, or locked away behind intellectual property

protections [87].

This chapter reviews the state-of-the-art in IoT software updates to highlight why

these approaches are independently unsuitable for long-term device maintenance. We

discuss why oft-cited alternative solutions (e.g., software updates as a paid service,

device leasing, etc.) will also be insufficient moving forward. We draw parallels to

the plastics and automotive industries to showcase differences and similarities across

these vastly different domains.

With this context, our blueprint for long-term updates assumes that the first-party

77



Chapter 4. Extending IoT Device Longevity

vendor is a single point of failure, so we propose a new strategy for designing IoT

software/firmware stacks that explicitly presumes the first party will abandon devel-

opment. Then, security updates and patches can be taken over securely by another

trusted party. This decentralized approach has worked in the personal computer do-

main, where systems may continue to work for decades as long as the architecture

and device drivers are supported by the general-purpose operating system. We note,

however, that we are not proposing a general-purpose OS for IoT devices, as IoT

hardware is too heterogeneous. Instead, we propose a more explicit demarcation be-

tween firmware (code unique to the device, which may be proprietary in nature) –

and software (code with no hardware-specific ties).

Next, we suggest a set of heuristics (e.g., heartbeat messages to supporting cloud

infrastructure, timestamps of last software releases, etc.) that can be used for the IoT

device to autonomously determine whether its vendor is no longer providing updates,

and transition to a community supported update channel transparently, if it exists.

We discuss the technical challenges in selecting and using these heuristics.

The final component in this new paradigm is securing the transition to the new up-

date channel, potentially over several decades. During this time, cryptographic keys

may be leaked or compromised due to insufficient bit length. Cryptographic proto-

cols themselves may be found to be vulnerable. We discuss how the software update

literature has largely ignored longevity factors, and we present an initial discussion

of tradeoffs between centralized, distributed, and hybrid approaches for securing soft-

78



Chapter 4. Extending IoT Device Longevity

ware updates.

4.2. On IoT Software and Firmware Updates

IoT device manufacturers cannot predict the future: they do not know what the next

several years (or even decades) of security vulnerabilities, bugs in existing code, and

breaking API changes will hold for them. Therefore, IoT device firmware requires

the ability to be updated such that manufacturers can fix, patch, or add new features

to deployed devices. The absence of firmware updates leaves devices vulnerable to

security threats and exploits [10, 117]. Hackers and malicious actors frequently target

outdated and unsupported devices, as these devices are often more susceptible to

attacks due to unpatched vulnerabilities. Unsupported devices may become part of

botnets which can be used to launch large-scale cyberattacks [10, 117].

In the context of IoT devices, the term firmware refers to the operating system im-

age that contains the kernel, libraries, and applications. On resource-constrained IoT

devices2, the firmware is typically monolithic (sometimes referred to as a unikernel),

consisting of a single binary that provides all hardware abstractions and application

logic. Because of this monolith, there is no privilege management, which means the

impact of a vulnerability in any component is catastrophic; the entire device’s code

is the Trusted Computing Base (TCB).

2The IETF defines class 1 IoT devices as having ∼10 KiB of RAM and ∼100 KiB of storage, and
class 2 devices as having ∼50 KiB of RAM and ∼250 KiB of storage [25].

79



Chapter 4. Extending IoT Device Longevity

On low-end IoT devices, firmware images are often purpose-built due to the one-

off nature of IoT device hardware. While more powerful IoT devices will typically

employ general purpose operating systems such as Linux [115], these devices are out

of scope; Linux’s heavy focus on preserving user space Application Binary Interface

(ABI) compatibility [111] and backward compatibility means that many decades-old

devices running Linux continue in operation.

Managing IoT devices requires keeping firmware up to date. Firmware updates

are crucial for addressing security issues, enhancing device performance, and intro-

ducing new features. However, updating firmware on IoT devices can be difficult,

particularly for devices with limited resources [19]. Challenges like storage capacity

limitations, intermittent connectivity, and power constraints can hinder the firmware

update process [56].

4.2.1. Software Update Schemes for IoT

Several state-of-the-art firmware update systems have been developed to tackle the

challenges faced by resource-constrained IoT devices [81, 112, 101]. These frame-

works offer solutions that address the constraints of such devices and mitigate various

threats. However, one significant limitation of current state-of-the-art designs is their

lack of consideration for the long-term deployment model of IoT devices. There has

been limited exploration of how these schemes will operate several decades into the

future.

80



Chapter 4. Extending IoT Device Longevity

Efforts have been made to broadly analyze the longevity of IoT devices and the

technical challenges associated with long-term deployment models [124, 15, 63]. These

analyses cover issues related to longevity, but there is a lack of implementations

that specifically address these challenges. This gap exists because many of these

challenges extend beyond the scope of software update standards. We believe that a

comprehensive and holistic perspective on IoT device security is required, along with

potential architectural and paradigm changes to effectively tackle these challenges.

Most existing update frameworks designed for IoT devices rely on symmetric en-

cryption, message authentication codes, and digital signatures to protect firmware in

transit and verify it on the target device. However, these update schemes fail to con-

sider how time will impact the overall security of the cryptographic algorithms they

rely upon [63]. Kiningham et al. [66] discuss this issue while analyzing the potential

for creating IoT devices with a 20-year lifespan. Indeed, cryptographic algorithms

have gone from state-of-the-art to insecure in less than 20 years.

The Internet Engineering Task Force (IETF), acknowledges this problem in their re-

cent proposal for Software Updates for the Internet of Things (SUIT). They emphasize

that developers “must carefully consider the service lifetime of their product and the

time horizon for quantum accelerated key extraction” [81] while implementing their

update scheme. The worst-case estimate for the time horizon for quantum-accelerated

key extraction is approximately 2030 [62]. Assuming the worst-case estimate holds

true, this means that IoT devices created today may only have 7 years before they need

81



Chapter 4. Extending IoT Device Longevity

to be updated to support stronger cryptographic algorithms. Otherwise, the under-

lying communication channels they rely upon may be compromised. Note that SUIT

appears to only consider issues related to asymmetric key attacks enabled by quan-

tum computing, but does not comment on the plethora of non-quantum issues (e.g.,

inadvertent key leakage and revocation, implementation bugs, under-specification of

protocols, etc.) that impact cryptographic systems today.

4.2.2. Device Vendors as a Single (and Complex) Point of

Failure

Software update schemes for IoT devices tend to be designed under the assumption

of a single entity responsible for building and distributing device firmware. We refer

to this vendor as the first-party vendor, which is the original creator of an IoT device,

and the entity responsible for creating and distributing firmware updates for an IoT

device. Note that in more complex multi-stakeholder scenarios, such as if an IoT

device is created and developed by one vendor and re-branded under another ven-

dor, the original device vendor takes precedence. While this simple centralized model

facilitates the development and suits the typical monolithic firmware design that is

commonly found on these devices, it does not consider any form of device auton-

omy outside the walled garden it was designed within, thus establishing a one-to-one

relationship between a device and its first-party vendor.

82



Chapter 4. Extending IoT Device Longevity

Existence
Does an entity
exist to develop
and distribute up-
dates?

Motivation
Does the entity want to
support the device?

Capability
Does the entity
have the techni-
cal resources and
tools to develop
updates?

Unsupported;
Lacking techni-
cal resources

Unsupported;
Lacking support,
motivation

Unsupported;
Lacking an
organization

Supported
Device

Figure 4.1.: Whether a vendor can provide software updates depends on their ex-
istence, motivation, and ability. Without any one of these factors, a
vendor’s ability to support devices becomes hindered.

83



Chapter 4. Extending IoT Device Longevity

Under this one-to-one device-to-vendor model, the issue becomes evident: if the

vendor disappears, IoT devices managed by that vendor will no longer receive up-

dates (see the bottom left circle in Figure 4.1). Even if the vendor continues regular

operations, they must be motivated and retain the technical and human resources to

develop updates for specific devices. Only when these three dependencies (existence,

motivation, and capability) are met can a device be considered supported by the

vendor.

The remaining intersections in Figure 4.1 reveal a range of factors that can prevent

updates from being built. For example, if an organization is motivated but lacks the

necessary developer resources, has accumulated excessive technical debt, or has lost

access to tooling, they will be unable to distribute updates. Similarly, if a vendor

may have the capability but lack motivation to issue updates; the vendor may not

have sufficient financial incentives, or the business may have decided to prioritize

support for other product lines. Finally, if a vendor has the motivation and resources

to produce updates, but ceases to exist (e.g., the company goes out of business), no

further updates will be produced.

Considering each of these factors as a point of failure, it becomes apparent that the

first-party vendor producing any software, let alone updates for a legacy device is a

colossal task. Each of these factors becomes more of a concern with IoT: for devices

that are being deployed into permanent installation settings with long-term lifespans,

this is a exceedingly fragile ecosystem.

84



Chapter 4. Extending IoT Device Longevity

Within this context, we propose a new way to think about IoT software updates,

which to our knowledge has not yet surfaced in the IoT security literature: the first-

party vendor is a point of failure. To allow long-term use and durability of IoT

devices, their software needs to be updated. Devices should not rely exclusively on

the first-party vendor for updates.

4.2.3. Software Updates within Walled Gardens

On Personal Computers (PCs), users do not rely on the manufacturer of a device’s

hardware to build, distribute, and maintain all the software they need to operate the

device. Instead, the PC vendor provides the hardware and maintains core pieces of

firmware and software as needed: the Basic Input/Output System (BIOS), system

drivers, and controller drivers, among other things. The applications and software

are distributed by other sources.

Although the model of obtaining software from a variety of sources is widely used

in the world of general-purpose computing devices, it is worth noting that this model

is not universally adopted. The converse model is most obviously apparent in smart-

phones, which use a more heavily centralized software distribution model. While

applications for smartphones are developed by different independent sources, they

are distributed through centralized sources that are controlled by the phone manu-

facturer or operating system vendor. An example of this is the Apple App Store,

which is used by iPhone and iPad devices [11]. A contrast to this is the Android

85



Chapter 4. Extending IoT Device Longevity

model, which demonstrates that full centralization and lock-in is not the only ap-

proach. Android does not lock users to a single centralized app store. Users are free

to use third-party app stores, such as F-Droid3, thus enabling an approach that favors

user control.

The “walled gardens” offer higher levels of control that can be beneficial for security

reasons4, but it also raises concerns about monopolistic practices and, more impor-

tantly, the single point of failure it creates. If the entity maintaining a centralized

“walled garden” app store were to suddenly disappear, users would not have any op-

tions for receiving software updates, or for installing software at all. In an approach

that favors user choice and autonomy, the disappearance of the entity maintaining a

centralized app store would merely be an inconvenience, but not prevent users from

using a third-party software distribution network.

The ongoing debate regarding these app stores relates to IoT: themes of centralized

control versus individual autonomy underpin current events. It highlights the need

for new paradigms that can accommodate both the benefits of centralized control and

the benefits of individual autonomy.

3https://f-droid.org
4Centralized app stores can perform application vetting, including developer authentication, func-
tionality checks, API tests, security tests, etc. [18]

86

https://f-droid.org


Chapter 4. Extending IoT Device Longevity

4.3. Non-Solutions to IoT Longevity

In this section, we examine existing methods and measures that aim to extend the

lifespan of IoT devices. It is often suggested that these methods can solve some

problems discussed in Section 4.2; however, we believe that the ideas listed below

only shift technical burdens onto other parties without addressing the underlying

issue. It is worth noting that some of these methods may still be useful for improving

vendor incentives (specifically 4.3.1 and 4.3.2), establishing standardized mechanisms

for secure firmware distribution (4.3.4), or delegating legacy maintenance to third

parties (4.3.3 and 4.3.5). The non-solutions mentioned below are not an exhaustive

list of all the alternatives considered to date. Our focus is on notable suggestions that

highlight the shortcomings of current models.

4.3.1. Software Updates as a Paid Service

A potential solution for those wishing to have devices updated beyond the manufacturer-

supported cost-free period is for the original device manufacturer to offer software

updates as a paid service [113]. This is a common practice in corporate and enter-

prise software (e.g., Red Hat Enterprise Linux). Users who pay for a license (that can

be paid e.g., monthly or yearly) receive software updates for their devices. Microsoft

famously continues to support the 22-year-old Windows XP for enterprise customers

who are willing to pay for support [59].

87



Chapter 4. Extending IoT Device Longevity

The benefit of this approach is it provides an economically sustainable way to

prolong device updates from the device’s original vendor. Many IoT device vendors

currently provide device updates at no cost to the user, but eventually, it stops making

financial sense for vendors to keep throwing development resources at products that no

longer generate income. Figure 4.1 highlights this in terms of vendor motivation; an

additional income stream can motivate vendors to develop updates for long periods.

Unfortunately, while this general idea may address vendor motivation, it still re-

quires the first-party vendor to be available and to be technically capable of perform-

ing device updates. If the first party ceases to exist, these “update subscriptions” will

terminate and the legacy devices will progressively age and fall out of date, resulting

in the original problem of vulnerable and unsupported devices.

While updates as a paid service can be an effective solution to extending the period

a vendor is motivated to provide firmware updates, it is not a solution that allows

for delegation of responsibility. The first-party vendor will remain the single point of

failure. Manufacturers need to ensure long-term support for their devices, so there

must be a contingency plan in place in case the manufacturer is unable, unmotivated,

or nonexistent.

4.3.2. Device Leasing Model

In enterprise and corporate settings, equipment leasing is a common practice where

hardware is rented or leased under a service agreement. At the end of the agreement,

88



Chapter 4. Extending IoT Device Longevity

the vendor responsible for the device will typically replace it with new hardware.

This way, the service provide ensures that the customer always has access to the

latest supported hardware covered under a service agreement. After the device is

decommissioned, it may be refurbished and re-sold as a previous-generation device.

The sale of used equipment is a great opportunity to reuse a device instead of throwing

it away to be recycled; however, the re-sale is only possible if the device has some

value at the end of its lease. This is particularly applicable to valuable enterprise-

grade hardware such as servers, network switches, and workstations.

Not all IoT devices can be leased, especially consumer devices such as smart home

gadgets and wearables. These devices are usually owned outright by the users. Leas-

ing or renting IoT devices may also be too expensive for some use cases, especially

in consumer and industrial markets. For devices that require professional installation

or are encased in homes, replacing them can be a hassle for consumers and offer no

significant improvement in longevity.

While this does provide the end-user with supported hardware which will receive

updates, this model does not address the IoT longevity problem as it only pushes the

burden of legacy device maintenance to the new device owner. Once a service agree-

ment ends and devices are decommissioned, they may be recycled and refurbished to

be sold on a third-party market.

89



Chapter 4. Extending IoT Device Longevity

4.3.3. Release of Source Code and Tooling

Another potential approach is to require (perhaps through legal means) the first-party

vendor to release all the code and tooling for the device such that a third party to

continue maintenance and development. This third party could be another company

or an open-source community that is willing to take on the development responsibil-

ity. While this solution appears beneficial, it faces several practical challenges. For

example, some manufacturers may not have the legal right to release the source code

for their devices due to proprietary software or intellectual property issues. Addi-

tionally, third-party developers may not have the expertise or resources to effectively

support older devices, which could lead to security and compatibility issues.

While we strongly advocate for open implementations, this method only shifts

the maintenance burden to another entity. This could result in a few maintainers

being responsible for a vast number of diverse IoT device firmware codes. Over time,

compilers and build tools will become outdated, causing a decrease in the number

of developers who can maintain these codebases. As maintainers shift their focus to

newer devices, older ones will eventually become outdated.

4.3.4. Unified IoT Protocols

Several protocol designs for IoT devices aim to provide a standard set of abstractions

to IoT device functionality. Protocols such as LWM2M [112] provide standard ways

90



Chapter 4. Extending IoT Device Longevity

to provision IoT devices, send/receive data, and more importantly perform software

updates, which is a comprehensive holistic protocol for an IoT device’s lifecycle. Other

protocols aim to provide unified solutions for only firmware updates, such as IETF

SUIT [81].

Unfortunately, these protocols deem the issue of device longevity out of scope [81],

or ignore it altogether [112]. Longevity is a crucial issue for these unified protocols,

which directly impacts the effectiveness of the cryptographic primitives used to pro-

vide security and integrity to firmware updates and ensure the device can operate

securely [81, 19]. These protocols do not cover what should be done with legacy

devices that do not support current cryptographic algorithms, leaving it up to the

device manufacturer to make these decisions. Without adequate training, context,

and supporting infrastructure, leaving these critical decisions to manufacturers (or

more specifically, developers employed by the manufacturer) is unlikely to result in

more secure software [121].

Additionally, proposals that cover firmware updates only consider firmware origi-

nating from a first-party vendor, which impacts long-term security and trust. These

proposals do not have provisions for vendor agility, forcing first-party vendors to use

unspecified, ad-hoc out-of-band processes to hand off support to third parties.

Unified IoT protocols are a non-solution for increasing device longevity – they

do not consider factors that ultimately impact long-term device longevity [63, 15]

as the various challenges impacting device longevity are out of the scope of what

91



Chapter 4. Extending IoT Device Longevity

these protocols aim to achieve. Thus, protocols are certainly part of the solution to

long-term device updates. Creating consistent APIs for IoT devices to conform to

will greatly assist in creating a unified and consistent way to distribute firmware to

heterogeneous IoT devices.

4.3.5. Open-source IoT Frameworks

The open-source movement has influenced IoT hardware vendors, leading to efforts to

make their device development frameworks and SDKs open-source. A notable exam-

ple is Espressif, a vendor who has embraced open-source as part of their development

model. As a result, open-source communities have emerged around their SDKs and

IoT development boards, leading to the creation of projects like ESP Home5 and

Tasmota6. Both of these projects allow IoT enthusiasts to write custom firmware for

Espressif devices.

Despite the benefits of this strategy, there are some disadvantages to slowly adopt-

ing an open-source model. For instance, developers must use Espressif’s fork of Low

Level Virtual Machine (LLVM)7 to utilize any of their SDKs on Espressif boards that

utilize the Xtensa architecture. If Espressif fails to keep its LLVM fork up to date

(it is currently approximately 10,000 commits behind upstream LLVM), its compiler

infrastructure for Xtensa boards may become stagnant. Nevertheless, Espressif has

5https://esphome.io
6https://tasmota.github.io
7https://github.com/espressif/llvm-project

92

https://esphome.io
https://tasmota.github.io
https://github.com/espressif/llvm-project


Chapter 4. Extending IoT Device Longevity

actively worked on adding this LLVM backend to upstream LLVM for approximately

four years, suggesting that they may eventually embrace open-source collaboration.

The concerns raised regarding tooling and dependencies highlight several challenges

in the software supply chains of IoT devices. The firmware for such devices often

relies on external dependencies, which in turn creates intricate supply chains with

interdependencies between various vendors and organizations. Each participant in

this chain introduces a potential point of failure or vulnerability that may impede the

timely and secure delivery of software updates to IoT devices. While the adoption of

a fully open-source model for IoT device development could help with some of these

challenges, the presence of closed-source or proprietary dependencies may hinder the

efforts of open-source communities.

While open-source communities cannot solve all the issues related to IoT device

firmware, they still have an important role to play. We believe that these communities

can serve as a valuable third party for intervention, helping to ensure that IoT devices

remain secure and up-to-date in the face of rapidly evolving threats. At the same

time, we also acknowledge that some proprietary dependencies may be necessary in

certain cases. While we would ideally prefer an entirely open-source model for IoT

device development, we recognize that this may not always be practical or feasible. We

believe that architectural changes to IoT device firmware are needed to accommodate

these dependencies and ensure that they do not become a barrier to effective device

management. These changes are discussed in greater detail in Section 4.5.

93



Chapter 4. Extending IoT Device Longevity

4.3.6. IoT Recycling

A common pattern seen in other hardware industries such as general-purpose comput-

ers and mobile phones is taking functional, yet unsupported, hardware and recycling

it responsibly, such that new devices can be made sustainable with resources extracted

from old devices, thus creating a more sustainable circular economy [43]. With this

in mind, a common suggestion is for IoT devices to adopt a similar e-waste recycling

strategy [113].

The issue of IoT recycling and e-waste recycling more broadly is characterized

by a significant global inefficiency in waste management. According to the 2019

Global e-waste monitor, a staggering 53.6 metric tonnes of e-waste was generated

worldwide, with only 9.3 metric tonnes (equivalent to approximately 17%) being

adequately recycled. The remaining 44.3 metric tonnes (equivalent to approximately

82%) were either dumped, traded, or recycled in a manner that is not environmentally

sustainable [51].

There are many reasons for the low utilization of e-waste recycling systems, but the

main driver is usually the high cost of recycling these materials [51]. This challenge

places significant financial pressures on the recycling sector, which may limit its ca-

pacity to properly recycle e-waste. Moreover, IoT devices are not attractive targets

for recycling. These devices are small, cheap to mass-produce, and difficult to recycle.

Separating recyclable from non-recyclable materials in IoT devices is far from trivial,

and due to their small size, any valuable resources that can be extracted is small [51].

94



Chapter 4. Extending IoT Device Longevity

Even when materials can be recovered and recycled, the resulting product may not

always be suitable for the same purpose as the original device. For example, it’s more

cost-effective to use recycled plastics as insulation rather than the creation of new

plastics for the same original purpose.

Societal and cultural aspects of recycling must also be considered here. Users

spending a few dollars for an IoT device may not feel motivated to drive8 to their

nearest recycling facility to responsibly dispose of the device. Storing unsupported

IoT devices in the home for future disposal can also be dangerous; coin-cell batteries

can be deadly if ingested, and other batteries may leak and cause damage. As dis-

cussed in Section 4.7.3, for recycling to work, IoT vendors need to be held accountable

not only for the production of long-lasting devices but also for their proper disposal.

4.4. Longevity and Durability in IoT Device

Software

To make progress towards increasing IoT device longevity, we must first understand

where in the IoT device lifecycle longevity may be unnecessarily limited. We begin

by drawing a distinction between longevity and durability [43, 37], and then review

how obsolescence plays a role in each of the stages of the IoT lifecycle.

Longevity refers to the period during which a device is useful from the time it is sold

8For low-cost devices, the cost in the fuel may be greater than the production cost of the device.

95



Chapter 4. Extending IoT Device Longevity

until it is disposed of or replaced. Note that “usefulness” is a largely subjective factor

that is dependent on the end-user of the device [38]. These subjective factors include

perceived product characteristics, situational influence, and consumer characteristics.

For example, consumers may purchase a new smartphone every few years to benefit

from the newest features despite owning a fully functional device – these replacements

can occur while the product is well within its working lifetime [49]. Situational influ-

ence, such as the emergence of new technologies or the changing economic landscape,

can also impact a device’s longevity. Lastly, consumer demographics, such as age, in-

come, and location, can influence how consumers perceive and use IoT devices, which

can impact the device’s lifespan.

Durability, on the other hand, is the intended period for which the device was

designed to be functional, as specified by the device’s designers and engineers. Factors

driving durability tend to be more objective than those seen in longevity (e.g., type

and quality of materials used, manufacturing process, expected wear and tear of the

device, etc.), and such factors are driven by consumer requirements and expectations.

To summarize, longevity is largely impacted by consumer-oriented subjective fac-

tors, while durability is impacted by product-oriented objective factors. There is a

significant overlap between subjective and objective factors: for example, product

requirements are objective factors; however, product requirements are derived from

the largely subjective needs of consumers. Furthermore, the objective factors that

impact device durability directly impact device longevity: if a device is not durable,

96



Chapter 4. Extending IoT Device Longevity

the useful lifetime of a device is significantly reduced.

The literature uses the terms longevity and durability to describe products holis-

tically [38, 49]; however, in the context of device software specifically, longevity, and

durability also play a role. When discussing software, longevity refers to the soft-

ware’s usefulness, which depends on the features it offers and how those features are

presented to the consumer. For instance, a printer compatible only with the AirPrint

protocol would be useful solely to users with AirPrint-capable devices. Should users

switch to devices lacking AirPrint support, the subjective value of the printer would

diminish (despite the printer not changing whatsoever). Thus, we believe that to en-

sure the product remains useful for an extended period, the software for that product

must be able to evolve to meet consumer needs.

The durability of software relies on its correctness. In essence, any software bugs

undermine its correctness and, consequently, its durability. A subset of these bugs

would be security-related, such as software vulnerabilities, thus making software se-

curity an objective factor that directly impacts software durability.

4.4.1. Obsolescence and the IoT Lifecycle

This section presents the IoT device lifecycle, as shown in Figure 4.2, with an emphasis

on various degrees of obsolescence. We begin by discussing device inception (Stage

0), and initial deployment by a first-party vendor (Stage 1). Then, we consider the

various stages that occur after support has ended: programmed obsolescence (Stage

97



Chapter 4. Extending IoT Device Longevity

Stage 0:
Design

Stage 4:
Hardware
EOL

t r

Stage 1: Supported Lifecycle

Stage 2: Programmed Obsolescence

Stage 3: Software Degradation

Figure 4.2.: An IoT device’s lifetime represented as an abstract timeline. From de-
vice inception, the first period t represents the end of software support
from the first-party vendor, and r represents the point in time when a
lack of software updates causes a degradation in device functionality. We
propose adding a transition period where an IoT device can detect obso-
lescence, and then transition to a third-party development model.

2) which will eventually lead to software degradation (Stage 3). Finally, we reach

the end of life for an IoT device, when the hardware can no longer sustain device

functionality (Stage 4).

Stage 0: Design

The creation of an IoT device begins with the first-party vendor. This vendor is

responsible for designing the device, including its intended function and the hardware

and software required to make it perform that function. At this stage, whether

explicitly or implicitly, critical decisions are made about the device’s longevity and

durability. For instance, a vendor may decide an IoT device should have a lifetime of

5 years, and thus be engineered to have at least 5 years of durability under normal

usage [100]. These decisions directly impact the overall durability of the device;

however, just because a device may be designed with durability in mind does not

98



Chapter 4. Extending IoT Device Longevity

imply it will be useful for the intended service lifetime.

A lack of consideration for long-term software updates impacts device longevity.

The vendor must therefore decide whether the device will receive software updates,

and if so, select or build their own update infrastructure. The IoT industry to date has

offered many examples of software updates being an afterthought, leading to insecure,

incomplete, or ad-hoc choices for distributing updates. Empirically, the velocity with

which new devices are shipped appears to take priority over the design of a sound

software update architecture [29].

Finally, a critical decision that the vendor must make is what happens to the IoT

device once it is no longer supported. Murakami et al. [84] refer to this decision as

planned or programmed obsolescence. If the vendor has considered this scenario, they

can inform consumers of the device’s end-of-life date or provide a path for continued

use. We augment the terminology of Murakami et al. to include negligent obsoles-

cence: when a vendor avoids making this decision entirely, leading to the inevitable

reduction of the device’s lifespan.

Stage 1: Deployment, Supported Lifecycle

The IoT device is designed and ready for release, at this point the device will be

deployed by an end-user and brought online. From now until the end of support any

bug fixes, patches, and features, are delivered through the first-party vendor. This

stage will continue on for the supported lifespan of the device, or until the vendor

99



Chapter 4. Extending IoT Device Longevity

loses the ability, motivation, or ceases to exist. The vendor may have a predetermined

timespan for software support (e.g., 5 years), or the vendor may have a paid model

for receiving updates. The service life from the previous stage should be how long

the device is supported before various types of obsolescence set in.

Throughout this supported lifecycle, various forms of relative obsolescence may

occur. Relative obsolescence refers to the disuse of a functional product, which may

occur due to several factors [38]. Subjective factors are going to determine if a device

will enter relative obsolescence. From a software perspective, this can be seen as the

integrations and software features supported by the IoT device: if a consumer has an

IoT device that does not support Android integrations, and the consumer migrates

to an Android-only ecosystem, then the device will technically be functional but not

useful to the consumer.

Stage 2: Unsupported, Programmed Obsolescence

Eventually, the firmware that runs the device will become unsupported. In Figure 4.2,

this is shown as marker t, which represents the end of first-party support from the

first-party vendor (e.g., through the factors in Section 4.2.2). This is where choices

made in Stage 0 become relevant: what will happen next for the device? If no

consideration of the device’s software afterlife was made during the device’s initial

design, there is a chance the device won’t make it past stage 3 (i.e., due to negligent

obsolescence). The device may retain some of its original functionality; however, any

100



Chapter 4. Extending IoT Device Longevity

lingering vulnerabilities may be left unpatched for an undetermined amount of time.

A recent example of this is monitor-io, an IoT device for monitoring the quality

of home Internet connections. When the monitor-io device maker closed its doors it

provided its users with a standalone firmware image that will allow their devices to

keep functioning in the absence of the vendor’s hosted services [46]. While this option

will extend the lifespan of the device, it is unclear who (if anyone) is now responsible

for maintaining and supporting monitor-io devices.

Another recent example is Amazon deciding in April 2023 to remotely disable their

line of Halo fitness trackers in July 2023, encouraging users to recycle their devices [3].

Here, the fitness trackers will not experience any software degradation as explained

below since they will no longer be functional in any way.

Note that the term “programmed obsolescence” can be used to describe multiple

ways that software can lead to device obsolescence. Programmed obsolescence is

most commonly used to refer to intentionally writing software that limits device

functionality [116, 42]. Instances of this can be created by vendors by pushing a

software update that disables features, slows down device performance, or by making

the device unusable [83].

Another form of programmed obsolescence arises from external factors. If an IoT

device relies on external services for any functionality and the service introduces a

disruptive change to its API or stops working, this represents a distinct type of pro-

grammed obsolescence. To maintain clarity we refer to this type of programmed

101



Chapter 4. Extending IoT Device Longevity

obsolescence as software degradation. In these instances, it is not the intentional in-

clusion of life-limiting features by the original device vendor, but rather an external

dependency that knowingly or unknowingly impairs functionality. These environ-

mental changes, despite being external to a device and the device’s software, impact

software durability.

Stage 3: Software Degradation

With the onset of time, the device will continue to work with the latest firmware

build that was installed. Depending on the evolution of the protocols and standards

that the IoT device depends on, the device may retain some level of functionality so

long as the various layers of the environment remain compatible. We show this in

Figure 4.2 as the period between t and r, and note that this period may not be linear.

An unsupported IoT device may continue to work for several years after becoming

unsupported. Several forms of software degradation can occur during this stage, as we

explain in Section 4.5.2. For example, the IoT device may not support the required

cipher suites to connect to newer TLS endpoints [29], causing failures in remote data

retrieval. Another example is the Y2K38 bug (expected on January 19, 2038) that

will affect devices that still use a 32-bit integer to track the number of elapsed seconds

since the epoch [52]. This will cause time-based errors and inconsistencies on devices

that have not migrated to a 64-bit integer for storing the time. The devices that do

not retain their original purpose (despite having functional hardware) will likely be

102



Chapter 4. Extending IoT Device Longevity

thrown out, contributing to an ever-growing e-waste problem.

Stage 4: Hardware End of Life

Eventually, physical hardware will degrade to a point where the device can no

longer physically function. Flash memory will wear out after too many write cycles,

and electronic components will degrade beyond their tolerances. At this point, the

hardware can no longer serve the end user, and at this point, the device will turn into

e-waste. Ideally, if the device was originally designed with durability in mind, the

hardware deterioration will occur after the device’s expected service lifespan. Once

the hardware has reached this stage, it can be interpreted as absolute obsolescence [38].

Once device hardware no longer functions, the next path it takes is dependent on

the economic model it is created in. As we discuss in Section 4.7.2, in a traditional

linear economy once hardware reaches its end of life it will be disposed of. This is the

most common path IoT devices take, a total loss scenario where none of the resources

inside the device are re-purposed9, and new devices are made from our planet’s finite

resources. This is contrasted by a circular economy, where efforts will be made to

repair broken devices and recover precious materials to produce new devices. By

embracing circular economy principles for IoT devices, we can not only reduce waste

and environmental impact but also create a more sustainable and efficient system.

9Due to the challenges discussed in Section 4.3.6.

103



Chapter 4. Extending IoT Device Longevity

The end-of-life of one device can become the starting point for another, creating a

closed loop of resource use that benefits both consumers and the planet.

4.5. Towards IoT Device Longevity

In this section, we compare historical advances in computing with IoT devices to

better understand the unique challenges faced by the IoT industry. We examine the

factors that allow for long-lasting systems in a general sense, taking examples from

computing devices that date back nearly half a century. We use these factors to

identify the main limiting factor of IoT device lifespans: the internet, along with

the inherent complexity and points of failure that internet-connected devices have to

contend with.

4.5.1. What Makes a Long-lasting System?

The problem of longevity may stand directly in the face of IoT; however, there are

several past examples of computer hardware that have withstood the test of time.

Some of the first home computers from 40+ years ago such as the VIC-20, Apple II,

and Amiga (among many others) still function today. Many collectors and enthusiasts

keep these older machines running. We believe it is valuable to unpack some of the

objective aspects that have contributed to their long lifespan.

Starting at the lowest level, these older devices have simple and modular hard-

104



Chapter 4. Extending IoT Device Longevity

ware made from commodity parts. Replacing a faulty chip with a working one is

straightforward, as the internal hardware of these older systems relies heavily on

socket-mounted integrated circuits. While hardware is not the primary concern of

our IoT solution, we concur that hardware repairability is crucial for the durability

of any device [43].

At higher levels, another key difference is that these devices were not heavily reliant

on the internet for bootstrapping the operating system, or for installing applications.

The norm for these machines was physical copies of the software, not ephemeral

software distribution via app store. These machines were largely standalone in func-

tionality with any internet functionality being a secondary feature.

4.5.2. The “I” in IoT Stands for Impermanence

Device complexity is a limiting factor of device longevity. Simple and minimal designs

for both software and hardware are favorable when it comes to building reliable and

long-lasting devices. One of the major limiting factors to IoT device longevity is the

fundamental feature that sets IoT apart: the internet.

Software has become progressively more network-dependent with the advent of

external vendor APIs and services, and this external dependency poses a problem;

as external services roll out new changes and features, breaking changes become a

common occurrence. Even following all the best practices regarding handling back-

ward compatibility, at some point, legacy APIs will be deprecated and removed from

105



Chapter 4. Extending IoT Device Longevity

production deployments. This eventual deprecation of APIs has become part of the

standard software development lifecycle and tends to not be disruptive as long as the

consumers of these APIs keep their client code up-to-date.

The “I” in IoT is therefore a problem: we can create physically-durable things,

but dependence on the internet inherently reduces software durability. Consider the

following hypothetical IoT sprinkler: it supports programmable irrigation schedules

and can retrieve precipitation forecasts from a public weather API. The sprinkler

communicates with a client application on a smartphone through the vendor’s cloud

infrastructure. Over time:

• The vendor can no longer afford to run their cloud infrastructure, so they shut

it down. App access to the sprinkler ceases to function, but users can still

program the sprinkler by using the touchscreen interface on the device.

• The weather API updates their endpoints to be TLS-only. The sprinkler’s lim-

ited TLS support does not have the root Certificate Authority (CA) certificate

for the weather API, so connections to the API cannot be authenticated (but

data can still be retrieved insecurely).

• The weather API updates to version 2 and deprecates version 1’s endpoint. The

sprinkler, unaware of the change, is no longer able to determine if it will rain

in the near future.

106



Chapter 4. Extending IoT Device Longevity

• The hard-coded network time protocol (NTP) service used by the sprinkler to

determine the current time goes offline. The sprinkler’s internal clock slowly

drifts, causing irrigation to begin at the wrong time. The user can manually

reset the time but needs to do so every month.

Note that the failure modes listed above were all caused by external, internet-

based dependencies changing or going away. The example highlights how even well-

intended changes (i.e., supporting a secure TLS transport) are difficult to anticipate

and support perpetually10 without software updates.

To cope with the ever-changing nature of the internet and all the building blocks

needed securely interact with it, firmware updates are a requirement for these devices.

A firmware update infrastructure inherently adds new points of failure on all the

external internet-connected dependencies, and if any building block in the stack has

a breaking change, the entire stack can fail, hinting at the need for a robust, fault-

tolerant update infrastructure.

4.5.3. Inspiration from Previous Paradigm Shifts

Considering the unique challenges of IoT, no existing research tool or industrial effort

offers a direct solution to the longevity problem. However, the longevity challenges

faced by IoT are not unique. A similar set of challenges plagued early personal com-

10Consider that not only is the root CA certificate required, but it also needs to be replaced when
it expires.

107



Chapter 4. Extending IoT Device Longevity

puters11 in the 1970s and 1980s. During this period, computers did not have general-

purpose operating systems, instead using hardware-specific operating systems created

by the manufacturer. For instance, computers made by Commodore could not run

Apple’s operating system, and IBM computers could not run Commodore’s. The

heterogeneity was mainly due to a lack of standardization between computers, oper-

ating systems, and hardware. In the following decades, general-purpose computers

emerged, and operating systems became usable as long as they had support from the

underlying hardware architecture. This transition led to a clear separation of respon-

sibilities between the hardware creator and the operating system developer, which is

something that IoT should aspire to.

We believe a general-purpose operating system for IoT is unlikely to see the same

degree of adoption as e.g., Microsoft Windows or Linux due to the massive hard-

ware heterogeneity in IoT12. Existing IoT operating systems such as Contiki [44],

RIOT [14], Tock [70], among many others tend to support a narrow range of micro-

controllers and hardware, with no cross-compatibility between OSes [54]. Applications

built for any one of these IoT operating systems need to be largely rewritten to run

on another OS.

Another paradigm shift occurred more recently with Android, the open-source

smartphone operating system. Android was designed to allow smartphone manufac-

11The early days of personal computers that included operating systems.
12Manufacturers of microprocessors in the IoT space

108



Chapter 4. Extending IoT Device Longevity

turers to include their proprietary components and hardware support while offering a

virtual machine runtime environment for user-space applications. Developers can tar-

get one of Android’s Software Development Kit (SDK) versions and have confidence

that their app will run on any Android phone (with heterogeneous hardware) that

supports that version. This separation enables the creation of Android applications

in a write-once-run-everywhere model.

The paradigm shift with Android is a partially attractive solution for IoT. Namely,

the architectural movement that abstracts away hardware-specific details enables de-

velopers to write applications that target a standardized runtime. Android partially

mitigates our concern with the first-party vendor being a point of failure: the OS for

specific devices is built and distributed by the first-party vendor13, but applications

for Android can come from Google’s play store or any third-party app store the user

wishes to use. If the first-party vendor of an Android device stops updating the OS,

this does not prevent applications from being updated so long as the applications

remain compatible with the SDK compatibility level of the Android runtime on the

device.

The concept of longevity in the context of Android extends beyond the domain of

first-party vendors. Community-driven projects, such as LineageOS [1], have emerged

within the Android community with the objective of extending software support to

Android devices that are no longer officially maintained. This is achieved through

13The first-party vendor of the Android device itself, e.g., Samsung.

109



Chapter 4. Extending IoT Device Longevity

the collaborative efforts of open-source developers who create customized versions

of Android, allowing users to install them on unsupported devices via an over-the-

wire (One-Time Write (OTW)) update, thereby revitalizing their functionality. The

ability for users to unlock their Android devices and replace the operating system is

a key factor facilitating this project’s success. For example, releases of Android 11

have been ported to many phones from 2014 by the LineageOS community [1].

One major obstacle in applying this approach to IoT devices is the lack of stan-

dardization for flashing firmware; no universal approach currently exists for users to

connect and install the firmware using traditional OTW methods. Indeed, some IoT

vendors conceal, make inaccessible, or disable hardware serial interfaces to prevent

unofficial firmware flashing. While Android phones require some type of Universal

Serial Bus (USB) port, IoT devices do not have such a requirement. For these IoT

devices, the only firmware re-flashing option is an over-the-air (Over-the-Air (OTA))

updates, which, as previously mentioned in Section 4.2.1, does not allow for end-users

to control device software, and is limited to the first-party vendor.

Additionally, even if a standard technical mechanism for flashing IoT firmware in an

over-the-wire fashion emerged, there are practical challenges with having users access

to the IoT device to perform an OTW update. This is especially important when

IoT devices are installed inside appliances or walls, making it difficult for users to

access the device to perform the update. Therefore, it becomes imperative to explore

alternative solutions that do not rely exclusively on user involvement for re-flashing

110



Chapter 4. Extending IoT Device Longevity

the device firmware. Giving users such an option is beneficial, but it should not be

the only solution.

4.6. A New Paradigm for IoT Device Longevity

The only way the Internet of Things can continue to evolve and be maintainable for

long periods of time is to eliminate the long-term maintenance burden on a single

entity, allowing for the responsibility of maintenance to be securely delegated to

new entities. Specifically, our proposal involves clearly denoting the components and

software that the first-party vendor is responsible, for and expecting that vendor to

eventually disappear. If architected correctly, we believe an IoT device built with

these principles can remain operational for the designed lifetime of the hardware.

4.6.1. Addressing the Maintenance Burden

In our model, the first-party vendor is initially responsible for all layers of the de-

vice, as shown in Figure 4.3. The first-party vendor needs to develop the hardware

along with some primitives that would be implemented for most firmware designs:

a hardware abstraction layer (Hardware Abstraction Layer (HAL)), any proprietary

firmware needed to enable hardware functionality, and some basic primitives for a

microkernel-inspired OS [14, 67]. As shown in Figure 4.3, this would correspond to

the middle portions of the operating system stack shown in blue. These layers can ef-

111



Chapter 4. Extending IoT Device Longevity

fectively contain all of the first-party vendor’s Internet Protocol (IP), any proprietary

components and/or components that require proprietary tooling will be contained

within the microkernel.

Building application logic using natively-compiled code negatively impacts modu-

larity as discussed in Section 4.3.5, therefore, we propose a shift towards a generic

execution environment that is agnostic of the underlying device architecture. IoT

devices that require special compilers and tooling will ultimately mean that future

maintainers have an additional burden to build and distribute binaries for these de-

vices. Therefore, we envision a platform-independent runtime for all application logic,

libraries, and abstractions beyond the microkernel. Additionally, we propose that the

platform-independent runtime expose a standard set of APIs for interacting with the

underlying device hardware. This is somewhat similar to the Android model dis-

cussed in Section 4.5.3, with one major change being a microkernel design. Android

uses the monolithic Linux kernel, which not only increases the trusted computing

base (TCB) but also increases the likelihood of eventual bugs. By reducing the size

of the software provided by the vendor, we are effectively minimizing the need for any

first-party updates beyond the first-party support period.

Our envisioned platform-independent runtime would expose a set of standard APIs

for peripheral access such as Universal Asynchronous Receiver / Transmitter (UART),

Serial Peripheral Interface (SPI), and flash storage. For the networking stack, we

propose any proprietary firmware to be included in the microkernel, and standard

112



Chapter 4. Extending IoT Device Longevity

Heterogeneous Hardware

App 1 App 2 ... App N

Peripheral Access Control Update Monitor

Peripheral Abstraction Layer

Platform Independent Runtime

Microkernel Primitives Proprietary Firmware

HAL

nth party

1st party

Figure 4.3.: Our proposed development model splits responsibility between multiple
parties. The creator of the device is responsible for creating the de-
vice’s hardware and implementing a minimal OS and runtime. Platform-
independent code can be created for multiple devices without proprietary
tooling.

abstractions for interacting with network devices be exposed to applications via the

platform-independent runtime.

Microkernel: In our model, the first-party vendor is accountable for the microkernel

and runtime components of the operating system. We deliberately select a microkernel

design to keep the trusted computing base of the OS small and minimize complexity.

A common drawback of microkernel designs is additional overhead due to a large

amount of message passing and context switching compared to monolithic kernels [67];

113



Chapter 4. Extending IoT Device Longevity

however, IoT deployment verticals are typically not high-performance14, therefore this

appears to be a reasonable trade-off.

Even though the microkernel design can reduce the number of bugs and their

impact on the rest of the device, it is important to note that bugs can (and will) still

occur. To address this, we propose that during the typical deployment timeline of

IoT devices, when the first-party vendor actively maintains the device (e.g., Stage 1,

Sec. 4.4.1), any major bugs in the microkernel or runtime should be resolved within

the period when the first-party vendor solely maintains the device. Ideally, only a

small number of lingering bugs (if any) would exist in the device after the first-party

support period ends, and these bugs will not be high severity15. If a high-severity bug

is found in the kernel after the vendor support period has ended – which we believe

to be less likely due to the microkernel’s reduced size, responsibility, and complexity

– the first-party vendor will need to fix and update the kernel. If the first-party

vendor is no longer available, the device will need to be reverse engineered so that a

new microkernel/HAL can be written from scratch for it, and flashed over the wire

directly to the device.

Platform Independent Runtime: The platform-independent runtime enables ap-

plications, libraries, and device abstractions to execute in a user-space environment,

14There are exceptions of high-performance IoT devices such as control systems in planes and
computer-vision enabled cameras; however, these are generally the exception to the rule, see
Section 2.1 for more information.

15If the device is maintained relatively regularly by the first-party vendor, it should remain relatively
secure barring any zero-day attacks that would impact that particular device.

114



Chapter 4. Extending IoT Device Longevity

without relying on any platform-specific code. This design choice solves the issues

highlighted in Section 4.3.5: future developers will no longer be restricted by the

custom compiler and tooling infrastructure or proprietary compilers that require li-

censing. While developers must still understand the underlying hardware, the runtime

abstraction allows critical libraries to follow a write-once-run-anywhere model. This

is especially important for third-party maintainers.

Regarding the choice of runtime, we have not yet settled on the ideal candidate;

however, there is one particular runtime that stands out as an attractive option; We-

bAssembly is a portable binary-code format originally designed for execution within

web browsers using a virtual machine. Over time, WebAssembly has expanded beyond

the browser, especially with the introduction of the WebAssembly System Interface

(WASI) [8], which enables access to lower-level OS and hardware features. The emer-

gence of the lightweight WebAssembly Micro Runtime (WAMR) [33], optimized for

embedded devices further supports the viability of WebAssembly for our purposes.

By leveraging WebAssembly (and by extension WASI and WAMR), we can explore

the potential advantages this runtime in our overall architecture. However, it is

essential to conduct further research to determine the feasibility and compatibility of

this approach in practice. For example, while there have been some feasibility studies

on the use of WebAssembly on embedded devices [76, 120, 77], larger scale studies

covering more heterogeneous hardware are needed to identify any shortcomings with

the platform-independent runtime, the standardized API for interacting with device

115



Chapter 4. Extending IoT Device Longevity

peripherals, and with the separation and modularity of our OS design. Ensuring that

this design is feasible on different classes of IoT devices [25] is crucial for its success.

One limitation of the platform-independent runtime as we envision it is complex-

ity. While our approach limits the amount of complexity in the TCB through the use

of a microkernel, some of that complexity cannot be avoided, and must be moved

elsewhere on the stack; in this case, that complexity is moved to the platform-

independent runtime. If any severe vulnerabilities are found in the runtime, in most

cases only a first-party vendor will be able to provide a patch. However, in cases

where manufacturers have an open-source development system and tooling as de-

scribed in Section 4.3.3 and 4.3.5, an open-source community could provide updates

to the platform-independent runtime. To support this, vendors should be encouraged

to adopt proven open-source runtime implementations. In the case of WebAssembly,

WAMR appears to be a good candidate as it is one of the main open-source reference

implementations of an embedded WebAssembly runtime.

4.6.2. Detecting First-Party Vendor Failure

We now discuss strategies for enabling IoT devices to autonomously decide if their

first-party vendor no longer provides support. This is particularly useful as it does

not require the device owner to actively check if their (potentially dozens of) IoT

devices are actively supported. IoT devices can use this knowledge to determine

when they can transition to another support channel as described in Section 4.6.3.

116



Chapter 4. Extending IoT Device Longevity

Heuristic Name Type Example
Relative time Static 5 years from deployment
Fixed time Static On January 1, 2030
Heartbeat Dynamic Check first-party API
DNS Dynamic Check first-party DNS record
Open collective Dynamic Check central device authority
Relative SLA Hybrid If 3 years since last update

Table 4.1.: Proposed vendor-liveliness heuristics that can be autonomously evaluated
by an IoT device to test if a first-party vendor is still supporting a device.
A static heuristic has no external dependency, a dynamic heuristic depends
on a dynamic check on an external dependency, and a hybrid heuristic uses
a combination of static and dynamic checks.

This connects to Stage 2 and Stage 3 of our model: instead of an unsupported device

running progressively more outdated software, it can decide when to transition and

switch to actively maintained software to avoid suffering from software degradation.

In our model, the vendor in charge sets liveliness metrics for the IoT device to detect

if it is currently being supported by the vendor without any explicit notification or

manual checking required from the user. These metrics ensure that the device can

make independent decisions about ongoing support.

The specific vendor-liveliness heuristics will depend on the use case of the IoT

device. A list of potential heuristics and examples is given in Table 4.1. For example, if

a vendor expects to support the device for 2 years, they can use a static heuristic such

as a timestamp stating the last day of support, allowing a device with a reasonably

accurate clock to determine if it is within the support period.

117



Chapter 4. Extending IoT Device Longevity

For checks that depend on external resources, dynamic heuristics can be used.

Dynamic heuristics rely on the device’s inherent connectivity. For example, the device

can check for a DNS record belonging to the first-party vendor, if the vendor no longer

exists, these DNS records may no longer be available.

When considered individually, each heuristic may not provide accurate results,

thereby resulting in false positives (i.e., the conclusion that a support channel is no

longer available). To address this limitation, we propose the combination of multiple

heuristics, employing both static and dynamic checks, to enhance their reliability. By

utilizing redundant sets of heuristics that draw from different sources, we can mitigate

potential false positives that arise with any given heuristic. For instance, while a

static temporal-based heuristic can be undermined by an error in or by spoofing the

device’s internal clock, the addition of a dynamic heuristic, such as periodic checks

to a first-party service, can counteract this risk by ensuring both heuristics evaluate

simultaneously. The layering of multiple heuristics enhances the overall reliability of

the heuristic system.

Finally, we also suggest a fail-safe manual intervention mechanism for end users.

Ultimately, users should have the ability to control the firmware that runs on their

devices, allowing a secure mechanism for users to control what firmware repositories

a device can access is another type of transition method that we suggest.

118



Chapter 4. Extending IoT Device Longevity

4.6.3. Vendor Agility

Once a device has identified through some heuristic or measure that it is no longer

supported by its current maintainer, a secure transition to a different support channel

must take place. Fortunately, there already exist technical mechanisms to accomplish

this, so there is no need to reinvent the wheel. The transition can be done through the

use of software update repositories, as is common on modern operating systems. The

OS maintains a list of the current update sources, which serve metadata including

timestamps and version numbers, and when new versions of the software are available,

they are downloaded and verified through the provided download sources. Later, users

can switch to a different repository (e.g., one serving beta versions of software, or the

same software hosted elsewhere) by modifying the repository URIs.

Repository-based update schemes with multiple stakeholders have been previously

proposed for the automotive sector (c.f., Uptane [64]). Uptane relies on a central

metadata repository that is responsible for tracking and verifying the authenticity of

firmware updates. Metadata for firmware updates is signed by the first-party vendor,

or a trusted third-party vendor. While Uptane was not originally designed for our

proposed model where we assume the first-party vendor is a point of failure, it provides

a promising starting point for implementation.

We are effectively envisioning a model where IoT devices no longer permanently

belong to the walled gardens of their manufacturers. Instead, software update sources,

including security core functionality are distributed from one of many possible sources,

119



Chapter 4. Extending IoT Device Longevity

enabling a more robust protection against single points of failure. Once the first-party

vendor is no longer available, the device can switch (ideally seamlessly) to another

source and extend its software support period. One advantage here is that it should

be possible for new software update sources to be added through software updates,

ensuring a long-lasting product support period.

4.6.4. Transition Security

In our design, addressing the challenge of long-term deployment models necessitates

consideration of both transition security and the longevity of cryptographic algo-

rithms. As mentioned in Section 4.2.1, the use of cryptography plays a key role

in ensuring the integrity and confidentiality of software updates. However, many

state-of-the-art cryptographic algorithms have not demonstrated longevity beyond a

20-year lifespan [66]. For this new paradigm to be effective for long-term IoT deploy-

ments, addressing this issue is critical.

One of the primary solutions to overcoming outdated and/or vulnerable crypto-

graphic implementations is through cryptographic agility. In our proposed design,

cryptographic agility would be supported through updates to libraries within the

platform-independent runtime, separated from the microkernel. This approach en-

sures that these libraries are not limited to a specific vendor’s implementation. By

decoupling the cryptographic libraries from the firmware and encapsulating them as

modular packages, we can enable independent updates to be made to these libraries

120



Chapter 4. Extending IoT Device Longevity

– the entire device firmware does not need to be rebuilt solely to incorporate a fix

for a single package. This modular approach empowers IoT devices to automatically

and when needed update the cryptographic libraries, eliminating the dependency on

vendors to release patched versions and preventing devices from becoming stagnant

while awaiting such updates.

Stagnant device firmware – Another security concern is that several issues can

prevent IoT devices from performing updates, thus causing devices to miss critical

firmware updates that are needed to retain compatibility. Perhaps they are deployed

within a network that blocks all outbound communications, or they were shut down

and set aside for a decade. These devices, with the onset of time, will likely end up

with some degree of software degradation due to the lack of rolling updates. If and

when these devices re-connect to the internet, there may be enough breaking changes

and software degradation that prevents these devices from performing updates, as the

levels of software degradation would prevent the underlying protocols responsible for

ensuring confidentiality and integrity would no longer function.

In such scenarios, the inclusion of a fail-safe manual intervention mechanism be-

comes essential to ensure their protection. End users will likely always need a secure

method to directly connect to an IoT device, granting them control over the en-

abled software repositories within the device. Moreover, they should have the ability

to manually update the device to the latest available firmware, thereby enabling it

121



Chapter 4. Extending IoT Device Longevity

to operate on newer software versions that remain compatible with the surrounding

environment. While the design and implementation of this fail-safe mechanism lie

beyond the scope of this chapter, it is worth considering firmware update schemes for

IoT that leverage the partial offloading of resource-intensive tasks to a trusted local

device, such as a smartphone. Notably, UpKit [68] presents a promising candidate

that aligns with this model and merits further exploration.

Trusting third-parties – Additionally, there are other security considerations

to take into account involving where transitioned software originates from. Pre-

transition IoT devices (Stage 1) have a centralized source of firmware that is trusted

as it originates from the first-party vendor. Once a device transitions to third-party

support repositories (Stage 2) the root of trust becomes more difficult to establish.

It is unclear whether there should now be two roots of trust, a single one for the

new vendor, or a new root constructed from some cryptographic signature over both

entity’s signing keys. In any case, the device must always be able to detect whether

an update originates from an untrusted party. Determining whether an update from

a trusted party is malicious (e.g., due to insider threat compromise of signing keys)

is out of scope.

One potential solution is a centralized third-party firmware distribution service

specifically created for IoT devices. This service will be trusted by IoT devices and

will need a trust anchor to be maintained on the devices from inception. However,

122



Chapter 4. Extending IoT Device Longevity

this design has some drawbacks, such as the need for static trust anchors and the

risk of key compromise [101]. Ultimately, a third-party centralized authority will

allow for the better overall security of IoT devices16. Nevertheless, this approach also

introduces new points of failure.

An alternative solution to the challenges posed by the centralized third party is full

decentralization. IoT devices can be configured with an arbitrary number of reposi-

tories that are not managed or governed by a single organization, thereby mitigating

the risk of a single point of failure. Additionally, a decentralized approach could pro-

vide more flexibility and autonomy to IoT device manufacturers and users, as they

would have greater control over the firmware update process and could choose to fetch

updates from a variety of sources.

User choice – To ensure a positive user experience, we propose granting users the

ability to make choices regarding their device’s software sources. In a post-transition

state, the device would be initially configured to trust a predefined set of central

known third-party sources. This configuration allows the device to maintain the

security and integrity of its software. However, we recognize the importance of user

freedom and acknowledge that some users may prefer to change and configure the

software sources according to their preferences.

16Assuming the authority has the policies, resources, and procedures to prevent malicious actors
from distributing firmware

123



Chapter 4. Extending IoT Device Longevity

4.7. Discussion

We now switch our focus to discussing how the effort to increase IoT device longevity

through software updates fits within the broader conversations related to the right to

repair and environmental activism.

4.7.1. Right to Repair

The Right to Repair movement aims to create legislation that enables consumers to

repair and modify their products by removing barriers imposed by manufacturers to

prevent unauthorized repairs [87, 100]. These barriers force consumers to seek repairs

from the first-party manufacturer or a subsidiary (authorized by the manufacturer).

Examples include manufacturers restricting access to tools and methods required to

perform repairs, adding software locks (e.g., through encryption, trusted platform

modules, remote attestation) that prevent unauthorized repairs, or hindering device

functionality if an unauthorized repair has occurred.

While the broad scope of the right-to-repair movement captures many practices

across many industries, we are focused on the unique challenges IoT devices pose for

its success: IoT devices use one-off firmware, running on one-off hardware, and as a

result, there is typically little support outside of the manufacturer’s walled garden. In

turn, this results in devices that are nearly impossible to modify/repair by consumers,

instead requiring a community of highly-specialized enthusiasts.

124



Chapter 4. Extending IoT Device Longevity

The reasoning for this turns out to be simple: the IoT devices are created in

response to consumer demand, and consumers are not demanding. Instead, the de-

mands are low-cost, small, and easy-to-use devices that connect to the internet and

perform some convenient tasks. To create small and convenient IoT devices, hardware

is designed specifically for the use case of a particular device. Chips, flash, and other

peripherals are soldered directly to a printed circuit board. Adding modularity (e.g.,

replaceable chips installed in sockets) increases overall device size.

In addition, the devices’ enclosure can be difficult to open – impeding access to the

device internals – as there was no intention of allowing repairability. Compromises

need to be made during the design process to fit a product to consumer demands,

and in IoT, these compromises are repairability and vendor dependence. We believe

addressing these concerns is possible through hardware that is engineered to be re-

pairable which we discuss further in Section 4.7.3, but it would likely drive up prices.

Manufacturers of products with embedded firmware rely on copyright law to pre-

vent their code from being reverse-engineered and copied [87]. They tend to oppose

the right-to-repair legislation arguing that if such consumer protections were in place,

they would be unable to protect the intellectual property stored inside the devices.

Despite this, a report on the right to repair from the Federal Trade Commission

(Federal Trade Commission (FTC)) noted that current copyright law already allows

the owner of a device to copy a computer program for maintenance or repair. Ad-

ditionally, consumers are permitted to circumvent technological protection measures

125



Chapter 4. Extending IoT Device Longevity

to diagnose, maintain, or repair certain products [50, 4, 5]. Certain very specific

situations permit the circumvention of technological protection measures (TPMs) to

restore functionality, as demonstrated in legally acquired software for medical devices,

video games, network devices, and various other specific contexts. These instances

allow consumers, end users, and other authorized individuals to bypass TPMs, as

outlined in the relevant sections of the United States Code of Federal Regulations [4,

5].

From a legal perspective, this issue presents considerable ambiguity. In the past,

when devices did not incorporate embedded firmware that necessitated users to

agree to a license for the device to operate (commonly known as a “shrink wrap

license” [87]), the concept of device ownership was relatively straightforward. Either

a consumer-owned a device, or they did not. However, with the advent of IoT devices,

the question of what precisely a consumer owns becomes uncertain. Although a con-

sumer may purchase an IoT device and physically possess its hardware, the extent of

ownership in relation to the device remains unclear.

While it may be argued that individuals have purchased the physical hardware of

the device, the extent to which they are able to control and use the device is limited.

This limitation arises due to the fact that, unlike general-purpose computers, IoT

devices are not designed to enable users to run any software they choose. Rather,

IoT devices are typically equipped with disposable software that is required for the

device to function. Unlike general-purpose computers, IoT devices are designed to run

126



Chapter 4. Extending IoT Device Longevity

specific software and are reliant on first-party vendors for functionality and security.

One common counterargument to this view is that individuals could hypotheti-

cally flash their own software onto the device, thereby taking full control of it. As

previously discussed, achieving this level of control is not a simple task. This pro-

cess typically involves specialized equipment and technical expertise, as well as a

significant investment of time and effort. The bar to entry to make this hypothetical

scenario possible is far too high.

The limitations on control over IoT devices are intentional, not accidental. Man-

ufacturers aim to create walled garden ecosystems to maintain dominance and prof-

itability. In terms of ownership, possessing the physical device grants physical access

but does not provide control over the firmware, unlike general-purpose computers.

4.7.2. Towards a Circular IoT Economy

A circular economy is an economic model that seeks to maximize the use of resources

and minimize waste by keeping materials in use for as long as possible. In a circular

economy, resources are used in a closed loop, where waste is minimized through

recycling, reusing, and remanufacturing, rather than disposing of them after a single

use [31]. The Internet of Things is far from a circular economy, it is instead a linear

economy. In a linear economy, raw materials are extracted from the environment,

processed into products, and eventually disposed of as waste after their use is no

longer needed [31]. This approach assumes that resources are unlimited and the

127



Chapter 4. Extending IoT Device Longevity

resulting waste from the process can be easily absorbed by the environment. The

linear economy operates on a throwaway culture where products are designed to be

used once (and for a short period) and then discarded, resulting in a constant need

for new resources and a growing amount of waste. This system leads to the depletion

of natural resources, pollution, and other negative environmental impacts.

The manufacturing industry has been criticized for promoting the illusion of envi-

ronmentally conscious decisions rather than implementing solutions that would actu-

ally help the environment. Companies like Coca-Cola, for instance, have been accused

of greenwashing, which is when an organization spends more time and money on mar-

keting itself as environmentally friendly than on actually minimizing its environmental

impact [30, 93]. In fact, as of 2021, the Coca-Cola company ranked as the top global

polluter of plastics for four consecutive years, emphasizing the significant contribution

of its products to the plastic pollution crisis [30]. Instead of taking responsibility and

implementing changes (e.g., moving away from plastic bottles) Coca-Cola’s “green”

marketing campaigns try to push the responsibility toward consumers and munici-

palities, arguing that they can’t be held responsible for what people do with their

product after purchase.

In the face of the challenge of ensuring the longevity of IoT devices, vendors may

resort to greenwashing, and, similar to Coca-Cola, attempt to blame consumers and

municipalities for the lack of high device recovery and recycling success. To avoid

this, a paradigm shift is needed. While some vendors may initially struggle with the

128



Chapter 4. Extending IoT Device Longevity

proposed changes, a legislative intervention that takes into account all stakeholders

is likely necessary to achieve meaningful change. This shift must address the entire

lifecycle of IoT devices, including their manufacture, usage, and disposal. In this way,

vendors can be held accountable for their environmental impact, and consumers will

have access to accurate information that allows them to make informed purchasing

decisions. Comprehensive legislation can level the playing field for all stakeholders,

promoting sustainable practices and ensuring the longevity of the IoT industry.

4.7.3. Sustainable Design

Designing for sustainability can help IoT devices last longer, even after they become

obsolete. Stead et al. [106] propose a sustainable design philosophy for IoT devices

that aims to create devices that last a lifetime by being modular and repairable.

According to this philosophy, if any part of the device breaks, it should be easily

repairable by the end user, with minimal waste generated from the repair process.

This philosophy applies to the embedded hardware board inside the device, meaning

that the device (e.g., a toaster) should still function even if the microcontroller re-

sponsible for IoT functionality fails. To achieve this, the design should be modular,

and a standard interface between the microcontroller board and the underlying device

hardware should be established, eliminating the need for one-off implementations of

IoT boards for heterogeneous products. This approach ensures that end-users can

easily replace the microcontroller board, thus extending the life of the device.

129



Chapter 4. Extending IoT Device Longevity

Sustainable designs align with our proposed model, as it promotes the development

of modular and sustainable firmware for embedded controllers over a long period. This

would allow for the creation of standardized boards that can enable IoT functionality

in various devices. For instance, the smart toaster [106] developed by Stead et al. can

be sold without the embedded board responsible for enabling its IoT features. Con-

sumers could then upgrade their toasters easily by purchasing the board separately

if they desire the functionality. The boards could be designed to be generic, with the

ability to recognize the type of device they are controlling and subsequently identify

the appropriate firmware packages required for the device.

By designing IoT devices to make them sustainable, manufacturers can reduce elec-

tronic waste, reduce the need for frequent upgrades, and ultimately provide greater

value to their customers. However, for this to become a widespread practice, manufac-

turers must adopt a comprehensive approach to sustainable design, with consideration

given to all stages of the product lifecycle, from design to end-of-life disposal. Such

an approach can only be achieved through a concerted effort by all stakeholders,

including manufacturers, policymakers, and consumers.

4.8. Conclusion

Keeping IoT devices secure and functional over multiple decades is undoubtedly diffi-

cult. The reliance on Internet-based dependencies makes IoT device software degrade

130



Chapter 4. Extending IoT Device Longevity

over time. Without proper long-term vendor support, these devices are likely to end

up in landfills even if the hardware remains functional. This chapter has argued that

security plays an important role in the IoT device lifecycle and that the evolution

of security protocols and algorithms necessitates a robust and decentralized software

update infrastructure for IoT. A initial software stack for future devices was proposed

along with a set of technical mechanisms through which devices can securely switch

to a new support channel, once their current vendor becomes unavailable. We hope

that this chapter serves as an initial step toward the goal of realizing long-lasting

and secure IoT devices, and ultimately toward the sustainable use of the Internet of

Things.

131



Chapter 5.

Implementation

The previous chapter, particularly Section 4.6, lays the theoretical foundation for

enhancing the durability and longevity of IoT device software. Whilst addressing

concerns about the intellectual property of IoT device vendors, we proposed a com-

promise. Instead of forcing IoT device vendors to disclose their source code and

tooling which would be a burden to open-source communities with maintaining nu-

merous heterogeneous hardware variations, we establish a clear delineation between

the vendor’s responsibilities and what third-party entities can support after a transi-

tion period.

Our proposed infrastructure to support IoT longevity extends beyond the imple-

mentation of a single application or tool. To name a few of the major pieces, there

is the platform-independent runtime, the implementation of vendor liveliness checks,

and the integration and augmentation of cross-vendor support in existing update

132



Chapter 5. Implementation

frameworks, among all the small details that are needed to ensure that each of these

components integrates seamlessly with the others. Implementing the full architec-

ture is a large, multifaceted implementation effort that would extend beyond our

implementation deadlines.

In this chapter, we will focus on creating a proof-of-concept implementation of the

platform-independent runtime discussed in Section 4.6.1. We believe this to be a

reasonable starting point as our entire design depends on the platform-independent

runtime integrating with heterogeneous IoT device hardware, and additionally, several

other components such as the update monitor have an inherent dependency on the

existence of a platform-independent runtime.

A key demonstration of the cross-platform nature of our platform-independent run-

time is execution on heterogeneous hardware. Our case study implementations use

devices with varying Instruction Set Architectures (ISAs), one Advanced RISC Ma-

chines (ARM)-based, and one Reduced Instruction Set Computing (RISC)-V based.

Maintainers of WebAssembly modules do not need any vendor-specific tooling or pro-

prietary code to work with heterogeneous devices, which addresses the burdens of

maintenance discussed in Section 4.6.1.

We begin by outlining the objectives for this preliminary implementation in Sec-

tion 5.1. Subsequently, taking into account the outlined goals and constraints, we

design and implement a WebAssembly (WASM) runtime for bare-metal embedded

devices in Section 5.2. We integrate our runtime with resource-constrained embed-

133



Chapter 5. Implementation

ded devices commonly used in IoT in Section 5.3. Lastly, we discuss further security

measures in Section 5.4 and future work in Section 5.5.

5.1. Implementation Goals

We want to illustrate how a real IoT device vendor can adopt the model presented

in Chapter 4. We designed the model such that a first-party vendor does not need

to re-implement all of a device’s software stack from scratch: presumably the vendor

already has some form of Hardware Abstraction Layer (HAL), kernel primitives, and

proprietary firmware for the System on a Chips (SoCs) they build IoT devices with.

The new piece a vendor would need to implement is the platform-independent runtime

– a WebAssembly runtime in this case – and all the platform-independent code.

In Figure 4.3, this would represent everything above and including the platform-

independent runtime. This includes:

1. The runtime itself, with the following items existing as modules that run as

platform-independent code.

2. Abstractions to map host peripherals and pins to more meaningful devices.

3. A peripheral access control system to ensure applications can only access certain

system resources.

134



Chapter 5. Implementation

4. An update monitor for determining if certain installed modules are out of date,

and to ensure the device is still maintained by its current vendor.

5. All applications that provide device logic and functionality, built atop the pre-

vious pieces.

For our proof of concept, we will start by leveraging a Hardware Abstraction Layer

(HAL) made by the device vendor of our target boards. The HAL we are using is

mainly to provide us with programmer-friendly mappings to device registers. Instead

of manually setting and reading values from registers to initialize the device, configure

peripheral multiplexers, and perform all input/output operations, using an existing

HAL will wrap these register operations with a clean interface. Note that we are not

starting with an operating system1, everything beyond the HAL is code we write.

We chose two boards with differing hardware to demonstrate the cross-platform

nature of WebAssembly. We chose an Espressif ESP32 as a commonly used IoT

Microcontroller (MCU), it is based on the RISC-V architecture and includes 4MB of

embedded flash and 400 KB of Static Random-Access Memory (SRAM). According

to Table 2.1, the ESP32 would be categorized as a Class 3 device.

The other board we chose is the Nordic nRF52840DK, a commonly used low-power

IoT development board with NFC and Bluetooth capability [88]. The nRF52840 CPU
1We could have started with an operating system, and then our implementation could leverage
process abstractions, memory allocation, and much cleaner I/O interfaces. We chose not to use
an operating system to demonstrate the feasibility of our design on embedded devices that do
not leverage an existing operating system.

135



Chapter 5. Implementation

is based on the Arm Cortex-M4 architecture and has 1 MB flash and 256 KB of RAM.

The development kit (DK) has an additional 64 MB of external SPI flash, which in

our implementation we do not use. Similarly to the ESP32, the nRF52840DK is

classified as a Class 3 device in Table 2.1.

5.1.1. Memory Safety

Another goal for our implementation is memory safety. Embedded systems are typ-

ically programmed in C or C++, which are languages that do not guarantee any

form of memory safety, as memory is manually managed by the developer. Programs

created with memory-unsafe languages are prone to bugs such as buffer overflows, use

after free, null pointers, dangling pointers, and memory leaks, among other memory-

related errors [107]. Requiring developers to correctly consider all the edge cases

related to memory management results in bugs created out of human error.

The alternative to memory-unsafe languages is memory-safe languages, which typ-

ically come in two varieties. The most common form of memory-safe language is

interpreted languages requiring some form of runtime, leaving the burden of garbage

collection and other memory management tasks to the runtime itself. Languages such

as Python, JavaScript, and Go fit this category. All of these languages require the

additional overhead of a runtime, which involves the additional overhead of garbage

collection [24].

Our implementation is written in Rust, a memory-safe systems programming lan-

136



Chapter 5. Implementation

guage. Unlike most memory-safe languages, Rust achieves both safety and speed

without relying on runtime or a garbage collector. It accomplishes this through its

extensive use of compile-time checks, which effectively identify data races and unsafe

memory accesses, all without incurring any run-time overhead [78, 71]. Additionally,

the HAL implementation we are using is also implemented in Rust2, which we will

discuss further in Section 5.3.

5.1.2. WebAssembly Implementation Scope

We plan on only implementing the base set of WebAssembly operation codes (op-

codes) that are part of the original WebAssembly specification [98]. Thus, any exten-

sions to the original WebAssembly core instructions that have recently been added are

presently out of scope. Additionally, instructions that are part of a proposal that has

not officially been accepted are out of scope. We are mainly marking these as out of

scope due to time constraints, but in the future, no technical barriers are preventing

us from adding on these language extensions.

5.1.3. Implementation Challenges

One of the primary challenges we will face is due to our implementation scope: a

HAL only provides a unified interface to underlying device peripherals for a single

2At least most of the HAL implementation is in Rust. Some assembly code is included in the HAL
implementations, mainly to boot the MCU.

137



Chapter 5. Implementation

device, but a HAL is not an operating system. Rather, an operating system can be

constructed atop a HAL. The implications of this are:

• There is no standard environment. A standard environment, such as libc, pro-

vides the standard library functionality as specified by the International Orga-

nization for Standardization (ISO) C standard [61].

• There is no operating system. Without operating system primitives, we do

not have memory management, thus dynamically allocating memory is not an

option unless we implement a memory allocator. Likewise, other primitives

offered by an operating system will not be present: no file system, no processes,

and no networking stack.

• There is no scheduling or concurrency unless we implement it.

In the context of Rust, a lack of a standard environment means we are limited to

the core library which is the standard set of primitive building blocks that all other

Rust libraries and programs build upon [109]. The lack of a memory allocator means

that dynamically-sized data structures such as vectors, hash sets, hash maps, and

others will not be usable. We can use stack-allocated arrays of a fixed size and other

primitive types.

Unfortunately, existing WebAssembly runtime environments do not meet our re-

quirements. The WAMR is designed to run on resource-constrained embedded de-

vices [33]; however, it is written in C, a language that is not memory safe [78].

138



Chapter 5. Implementation

Similarly, several WebAssembly runtimes have been written in Rust such as Wasm-

Time [119] and Wasmer [118]; however, these runtimes depend on a standard li-

brary and allocator, making them not portable to an embedded context. As a result

of the limitations of existing WebAssembly runtimes, we developed a memory-safe

WebAssembly runtime that can run on embedded systems without an allocator or

standard library.

5.2. Implementation of a WebAssembly Runtime

With the implementation goals and challenges established, we will now outline the

implementation details of our embedded WebAssembly runtime. First, we provide

some background context on the internals of WebAssembly in Section 2.5. Then, we

will go over parts of our WebAssembly interpreter’s implementation in Sections 5.2.1

and 5.2.2. We then use our implementation on heterogeneous embedded systems in

Section 5.3.

5.2.1. Parsing WebAssembly

The WebAssembly parser takes the binary representation of a WebAssembly module

and generates parts of a module instance. Note that these parts cannot be directly

interpreted without first going through the compiler. The parser iterates over a We-

bAssembly module byte-by-byte, parsing sections, functions, and validating instruc-

139



Chapter 5. Implementation

tions to ultimately create an internal representation of the module for the interpreter.

We present the first stages of our runtime in Figure 5.1, which we will describe below.

Our runtime is given a WebAssembly binary that is loaded into memory. The

WebAssembly module is first sent through a reader which decodes the first bytes of

the module and then creates a module structure that is then passed to the parser.

The reader creates an iterable stream of bytes that the parser then acts upon.

The parser is responsible for extracting the various sections of a WebAssembly

module, described in Section 2.5. The parser extracts the functions, function types,

globals, tables, and exports. Note that at this point, any executable routines cannot

be directly passed to our interpreter. At this point, we have extracted the pieces of

the module, with some intermediate steps to perform.

The intermediate steps we have to perform are through a construct we have called a

compiler, which is responsible for augmenting addresses inside WebAssembly modules

and formatting all instructions to an executable code buffer. This is needed, as control

instructions in WebAssembly do not define their targets by using a relative index3, but

instead use labels that reference outer control constructs by relative nesting depth [53,

98]. For example, a target with index 0 refers to the innermost control instruction,

and larger indices move farther out. This also has the side effect of all labels being

scoped: a label can only reference constructs in which they are nested [53].

3Relative indexes would allow us to perform in-place interpretation, where jump targets shift the
instruction pointer relatively within the bytecode.

140



Chapter 5. Implementation

As a result of this, our compiler stage needs to resolve these relative nesting depth

labels into something an interpreter can easily execute by just shifting the instruction

pointer to relative positions within the module. To accomplish this, the compiler

iterates all code sections, all items within that code section, and finally all items in

all functions. All instructions opcodes are written to a compiled code buffer, which

is used by the interpreter to directly run the WebAssembly module.

When encountering a branch instruction, the compiler determines the relative nest-

ing depth to the target label. The relative nesting depth is calculated by finding the

difference between the current nesting depth (the number of active control flow con-

structs on the label stack) and the nesting depth of the target label. Internally,

the compiler stores the relative nesting depth and current position of the branching

instruction in a FixUp structure, which is applied later on in the process.

After the compiler has read all instructions and written them to the compiled code

buffer, we apply the FixUp structures. The compiled code buffer will contain all

branch instructions with placeholder values, thus the FixUp structures are applied

to resolve the placeholder values with the correct offset values that were previously

calculated.

Finally, at the end of the compilation process, the compiled bytecode in the com-

piled code buffer is now fully resolved with all branching instructions pointing to

the correct destination offsets, and the resulting WebAssembly bytecode is ready for

execution.

141



C
hapter

5.
Im

plem
entation

Reader Parser

Module Instance

functions

function types

globals

tables

exports

compiled code

Interpreter Memory Buffer

WASM Module
Bytes

function types

functions

globals

tables

exports

module definition

Compiler

Iterate all
code sections

Set context based on
function signature

Calculate code
start / end position

Adjust bytecode
references and addresses

Iterate all items in function

Compiled Code Buffer

Write instruction
data to compiled

code buffer

add local variables
to context

Determine start/end
of instruction

Compile instruction

Module Instantiation Process

Figure 5.1.: High-level overview of module instantiation. Given a WebAssembly binary, we iterate
and parse the bytes in the module into the individual components that make up
the module. Executable components and dependencies get sent through a compiler
stage that fixes up any internal addresses and labels, writing the resultant executable
instruction to a compiled code buffer. The module instance structure can then be
invoked by the interpreter.

142



Chapter 5. Implementation

5.2.2. Executing WebAssembly

Given an instantiated WebAssembly module, we expose an API that allows callers

to invoke exported functions inside the module. For WebAssembly modules that are

an entry point to IoT application logic, a module needs to export a function called

main to begin execution. We show the high-level process in Figure 5.2, where given

a function name to invoke and a module instance, the overall process of running the

module is shown.

First, the interpreter needs to load the compiled code segment from the module

instance. This is going to act as the instruction tape for the main interpreter loop.

Using the buffer of instructions the interpreter calculates the current code position,

and maximum code position, and sets up execution context structures.

The interpreter will then enter the main execution loop, as shown in Figure 5.2,

this process will occur as the interpreter :

1. Read current instruction: the current opcode is read from the instruction buffer

at the current position

2. Lookup opcode handler: the opcode from step 1 is parsed and a handler function

is matched for the opcode.

3. The opcode handler is executed. For the sake of brevity, we will not explain

how the runtime executes every opcode; however, we discuss below how certain

types of opcodes are handled.

143



Chapter 5. Implementation

4. The opcode handler exits, in evaluating the opcode it will have accessed memory

through the page table abstraction, mutated the call and/or value stacks.

5. Current position in the program is advanced

When reading opcodes, the interpreter needs to translate the opcode (an unsigned

8-bit integer) to something meaningful that it can act on. The interpreter matches

all opcodes using a lookup table that contains all the standard WebAssembly op-

codes [98]. This lookup table will match an opcode’s number and return a structure

that describes the operation in detail such that the interpreter can correctly execute

the instruction.

1 pub struct Opcode {
2 pub ret_type: ValueType ,
3 pub op1_type: ValueType ,
4 pub op2_type: ValueType ,
5 pub memory_size: u8 ,
6 pub code: u8 ,
7 pub text: &’static str ,
8 }

Listing 5.1: WebAssembly Opcode representation as a Rust struct

The internal representation we use for an opcode is shown in Listing 5.1, which

describes the metadata of what a particular opcode does. ret_type describes the

return type of the opcode, op1_type and op2_type describe the operands to the

144



Chapter 5. Implementation

operation being performed, code is the numeric opcode, and opcode_text is a textual

representation of the opcode for debugging purposes.

An opcode also contains a ValueType, which is an enum that describes what type

a given value should have. At runtime, the data contained within the Opcode struct

gives the WebAssembly interpreter enough information to act on a given instruction.

We discuss how these opcode structs are used in the context of the main interpreter

loop in Section 5.2.2.

145



C
hapter

5.
Im

plem
entationExecution Environment

Interpreter Memory Buffer

Module Instance

Value StackCall Stack

Host Call
Handler

Module Instance
from Parser

Memory Writer

Memory InstancePage Table

Call to exported
WASM function

Interpreter

Load code segment
of function from
module instance

Interpreter Execution Loop

Read current
instruction

Execute Opcode
Handler

Lookup Opcode
Handler

call opcode return opcode get_local
opcode ... opcode n

Current code
position

Maximum code
position

Buffer of
Instructions

Address mapping
for memory

lookups Calls that

resolve to host

module

M
ut

at
io

ns
 a

ga
in

st
 c

al
l /

 v
al

ue
 s

ta
ck

Figure 5.2.: Our WebAssembly module execution process. Given a WebAssembly module that has
been instantiated, our interpreter executes the module primarily using the instructions
and offsets contained in the compiled code buffer. The interpreter maintains a call
and value stack for control flow and register-based operations, and we use a page table
for primitive memory virtualization.

146



Chapter 5. Implementation

5.2.3. Memory Management

Our WebAssembly interpreter does not use a memory allocator. In fact, no part of

our design makes use of dynamic memory allocation. Since our proof of concept was

implemented on bare metal without an operating system we do not have an allocator

available to us. On the resource-constrained embedded systems we are implementing

this on, dynamic memory allocation in this context can lead to large amounts of

fragmented memory, which would negatively impact performance and potentially lead

to out-of-memory problems at runtime.

To maintain the high availability of a device, we opted to avoid memory allocation

within the WebAssembly interpreter by giving the interpreter a fixed buffer of memory

to use internally. This buffer is then managed using simple abstractions that give the

illusion of dynamic memory.

The buffer is represented by a reference to a mutable array of unsigned 8-bit inte-

gers. This buffer has a size defined at compile time, thus dynamic memory allocation

cannot exceed the size of the microcontroller’s available memory, rather, dynamic

memory allocation can only exceed the size of the statically allocated buffer. A mu-

table reference to the buffer is passed to the WebAssembly execution environment at

the time of creation, as shown in Listing 5.2. The execution environment is created,

and the reference to the mutable memory buffer is sent back for later steps.

Memory management inside the execution environment is managed using a memory

instance. The memory instance structure is shown in Listing 5.3, and the memory

147



Chapter 5. Implementation

1 // Declare a mutable reference to a buffer of 16384 bytes in
length

2 let buffer = &mut [0u8; 0x4000];
3
4 // Create execution environment using memory buffer
5 let environment = Environment ::new(buffer);

Listing 5.2: Declaring a memory buffer as the backing memory for the WebAssembly
runtime

instance creates an abstraction over the shared memory buffer. The memory in-

stance provides several methods for loading and storing values of different types in

the memory buffer.

Notably, inside the memory instance, we use a page table abstraction for managing

virtual memory addresses. All load and store operations performed by a WebAssem-

bly module go through the page table, which will map the virtual address to a real

one. Note that all the memory mapping is not backed by hardware acceleration such

as a MMU, thus we incur a performance penalty by emulating rudimentary MMU

functionality using software.

5.3. Proof of Concept on Embedded Systems

In this section, we use our WebAssembly runtime combined with a demonstration

program on real hardware. For our demonstration program, we use SPI to send

commands to an Organic light-emitting diode (OLED) display to display a “hello

148



Chapter 5. Implementation

1 pub struct MemoryInstance <’a> {
2 buf: *mut u8 ,
3 buf_len: usize ,
4 page_table: UnsafeCell <PageTable >,
5 num_pages: Cell <usize >,
6 min_pages: usize ,
7 max_pages: usize
8 }

Listing 5.3: Memory instance structure

world” message. All of the application logic is implemented in WebAssembly, thus

the responsibility of the host is to initialize hardware peripherals (e.g., initialize the

SPI bus and system timers) and act on system calls from the WebAssembly runtime.

Our demonstration program is written in Rust and compiles down to a WebAssem-

bly module. For the source code of the demonstration program, refer to Appendix A.

An example of how we interact with host functions from a WebAssembly module is

in Listing 5.5, in Rust an external function is treated as an external C function from

a safety perspective.

5.3.1. Interfacing With Host Functionality

We first have to augment the WebAssembly runtime to support invoking external

functions. To accomplish this, we modified the execution environment structure used

by the interpreter to require an implementation of the host handler trait, pictured in

149



Chapter 5. Implementation

Listing 5.4. Users of the WebAssembly runtime need to provide an implementation

of the import and dispatch methods, which are responsible for resolving an import

from the host module, and the other for dispatching commands to host functionality.

1 pub trait HostHandler {
2 fn import (&self , module: &str , export: &str , import_desc:

&ImportDesc) -> Result <usize , Error >;
3 fn dispatch (&self , interp: &mut Interpreter , mem: &

MemoryInstance , type_index: usize , index: usize) ->
Result <(), Error >;

4 }

Listing 5.4: The Rust trait that needs to be implemented for WebAssembly modules
to call host functions. Import defines a function that resolves a host
module import to a function, and dispatch is responsible for executing
the function resolved from import.

From the perspective of WebAssembly, interfacing with host functionality is simple.

WebAssembly modules perform interop via a C-style interface, instead of using Rust

types and interfaces, any data needs to be passed using primitive data types or raw

pointers.

On the host side, an implementation of the HostHandler trait is required to handle

host function calls. This implementation is passed to the WebAssembly environment

upon creation, such that the WebAssembly runtime can resolve and execute host

functions. For the full source code of the WebAssembly program implementation,

refer to Appendix A.

150



Chapter 5. Implementation

1 #[link(wasm_import_module = "host")]
2 extern "C" {
3 fn spi_transfer(ptr: *const u8 , len: i32);
4 fn delay(ms: u32);
5 }

Listing 5.5: Example definitions of two host functions from a WebAssembly module
written in Rust.

5.3.2. Implementation on a RISC-V Target

For a RISC-V target, we chose the ESP32-C3-DevKitM-1, which we will refer to as

the ESP32 [48]. The ESP32 is a commonly used Wi-Fi-capable IoT development

board. For this demonstration, we will be using the ESP32’s hardware-driven SPI

peripherals to connect to our OLED display.

We used an ESP HAL4 implementation in Rust. Note that Espressif also provides

ESP-IDF (ESP-Integrated Development Framework), which is a more mature devel-

opment framework for ESP boards based on FreeRTOS [47]. While FreeRTOS is a

microkernel-based design that does fit into our envisioned model from Section 4.6,

we did not opt to use ESP-IDF and FreeRTOS due to time constraints. It would be

a trivial effort to expose a C-friendly API of our runtime and integrate that into an

ESP-IDF implementation. As a basic proof of concept to show input and output, a

bare-metal implementation was more efficient for us to implement.

Using the ESP HAL Rust implementation, we created a simple entry point that
4https://github.com/esp-rs/esp-hal/

151

https://github.com/esp-rs/esp-hal/


Chapter 5. Implementation

sets up system peripherals, clocks, and timers. With the basic setup completed we

then set up the SPI peripheral that is compatible with the OLED display discussed

in Appendix A, and a timer structure for acting on delay host calls. We created

an implementation of the HostHandler trait that acts on all required host functions

using the device peripherals.

The SPI and delay devices are ultimately structures that need to be owned by

the structure that implements the HostHandler trait. Additionally, the ESP HAL

implementation requires a mutable reference to peripherals to use them, which is a

reasonable restriction to enforce memory safety.

To accomplish this, we wrapped the types in a RefCell which is a container type

that allows us to achieve interior mutability on structure fields. Using RefCell comes

with a runtime cost since borrow checks are performed dynamically, and a runtime

panic can occur if the borrow rules are violated.

For building and loading the firmware to the device, we needed to install a Rust

target5 that will compile to the target architecture of our board. Additionally, we

had to configure our Cargo6 to use the espflash tool to flash the ESP32 with our

firmware.

In reference to our model described in Figure 4.3, the aforementioned steps are all

ones that would be performed by the first-party vendor. We were required to use

5Specifically, riscv32imc-unknown-none-elf.
6Cargo is Rust’s build system and package manager.

152



Chapter 5. Implementation

specific compilers and tooling for this particular board, and these are ones that (per

our longevity model) may not be supported indefinitely.

In Figure 5.3a, our “hello world” demonstration program is shown running on the

ESP32. Note that all modifications to the core application logic, the “hello world”

program in this case, did not involve changing the device firmware – we only had to

rebuild and flash the WebAssembly demonstration program.

5.3.3. Implementation on an ARM Target

As previously mentioned we chose the Nordic Semiconductor nRF52840DK (which

we also refer to as the nRF board) as our ARM-based target. Similarly to the ESP32

implementation, we found a Rust implementation of a HAL maintained by Nordic

semiconductor7. The HAL is structured somewhat similarly to the HAL for the

ESP32, only it follows slightly different vendor conventions for naming and library

structure.

Similarly to the ESP implementation, we found that peripherals were structured

such that mutable references are required to use them. When creating our implemen-

tation of the HostHandler trait, we followed a similar pattern of wrapping them in

a RefCell for interior mutability against these instantiated peripherals. Unlike the

ESP32, the nRF SPI peripheral API does not handle the Chip Select (CS) line, which

is responsible for telling the SPI peripheral to wake up and send or receive data. Thus,

7https://github.com/nrf-rs/nrf-hal

153

https://github.com/nrf-rs/nrf-hal


Chapter 5. Implementation

(a) ESP32 demonstration

(b) nRF52840DK demonstration

Figure 5.3.: The “hello world” WebAssembly program running on our WebAssembly
runtime using the ESP32 (top) nRF52840DK (bottom). The additional
chip used on the nRF52840DK demonstration is a quad hex buffer to
convert logic-level voltages.

154



Chapter 5. Implementation

the HostHandler struct on the nRF has an additional chip select General Purpose

Input/Output (GPIO) pin passed through. The API difference with the chip select

line has no impact on the API exposed to the WebAssembly module, it is just an

additional step we need to perform when sending/receiving data over SPI.

In Figure 5.3b we show our demonstration hello world program being run using

a SPI display. It is worth noting that in Figure 5.3b there is an additional chip

being used compared to the ESP32 demonstration. This additional chip is required to

convert the lower-voltage Transistor–Transistor Logic (TTL) logic level (2.4V) output

from the nRF52840DK to a higher-level Complementary metal–oxide–semiconductor

(CMOS) logic level (5V) required by the OLED display we use. Specifically, we used

a 4000-series logic quad hex buffer, the 4050 [82].

The WebAssembly programs that are shown in the demonstration images are iden-

tical – they are the same program with no additional modifications made. Despite

running on different hosts with different ISAs, the host peripheral API staying the

same enables the operation of these demonstration programs to work despite the

different underlying hardware.

5.4. Security Measures

Currently, all host peripheral calls have no security measures in place. Since we

are orienting this prototype as an initial step towards the architecture presented

155



Chapter 5. Implementation

in Chapter 4, some control measures need to be considered to prevent potentially

malicious or compromised WASM modules from compromising the device. We cannot

trust all code coming from arbitrary maintainers, thus some measures need to be in

place to ensure that WASM modules are only granted minimal privileges.

We suggest that alongside the WASM modules a manifest describing the module,

similar to the manifests from update systems such as SUIT and TUF [81, 101]. This

manifest will have an additional property of what host functions it needs access to and

the actions it can perform against those peripherals. An example of such a manifest

with a security policy attached is shown in Listing 5.6.

1 module:
2 name: Light switch application logic
3 capabilities:
4 peripherals:
5 gpio_0:
6 name: Status Indicator
7 allow: all
8 spi_0:
9 name: The flash memory chip

10 allow:
11 - transmit
12 - receive

Listing 5.6: Example of a manifest that describes a light switch’s application logic.
The peripherals map describes each named peripheral exposed to the
runtime, and the given module describes what actions it can perform
against system peripherals.

In Listing 5.6, lines 5 and 8 introduce named peripherals for GPIO and SPI. How-

156



Chapter 5. Implementation

ever, there is a concern about how WebAssembly module maintainers from outside

the first-party vendor will be aware of the device’s peripherals and their connections.

For example, gpio_0 might control a status indicator light on one IoT device, but

on another, it could toggle the deadbolt of a smart lock. A misunderstanding of

peripheral functions could lead to serious consequences.

To tackle these challenges, we propose some involvement from first-party vendors.

As described in Section 4.6, first-party vendors must participate in some extent in

our proposed model, which may include implementing or using a WebAssembly run-

time. Additionally, device vendors should provide a publicly accessible peripheral

description manifest. This manifest would serve as structured documentation, clearly

describing available peripherals and host functions for the WebAssembly runtime.

This way, external developers and third parties can understand and maintain specific

peripheral mappings for different devices.

5.5. Discussion and Future Work

In this Chapter, we demonstrate the feasibility of utilizing a platform-independent

runtime as described in Chapter 4 by building a WebAssembly runtime that targets

embedded devices. This is an incremental step towards the full model described in

Section 4.6.

Our prototype has several limitations, and a large amount of the future work for

157



Chapter 5. Implementation

this prototype revolves around addressing these limitations. While we use Rust for its

attractive benefits of memory safety, we violate a lot of Rust’s safety guarantees with

our allocator-free model. By statically allocating a shared mutable buffer of mem-

ory, and then building the interpreter stacks, instruction buffer, execution memory,

and every other component that requires some form of dynamic memory, we require

the use of unsafe code. The unsafe keyword in Rust allows developers to bypass

safety measures in Rust, such as preventing developers from having multiple mutable

references to a piece of memory.

Solutions to deal with the usage of unsafe are to adopt an allocator that is optimized

for embedded use cases, or ensure that buffers are not shared and always used by one

owner. For the latter, this would involve making use of additional buffers which would

store copies of data used by each component of the interpreter, thus driving up overall

memory usage.

Components of our design take inspiration from the design choices made by the

WebAssembly Micro Runtime (WAMR) which is written in C [33]. WAMR is a

lightweight WebAssembly runtime that can run on embedded systems that provide

an allocator. Other WebAssembly runtimes have been explored in IoT contexts,

namely WAMR. Aerogel by Renju et al. is an access control framework designed for

peripheral access in IoT devices, which is built on WAMR [76]. Another embedded

runtime is WAIT by Li et al. which is a lightweight WebAssembly runtime that

performs validation at compile time to reduce the additional overhead of running

158



Chapter 5. Implementation

WebAssembly on embedded devices [72].

A limitation of any interpreter design is performance. The additional complexity

of an interpreter means that native code will always perform better, and with less

complexity. While most authors of interpreters tend to argue that the relative per-

formance of their implementation is fine for a given use case, however, for IoT these

performance limitations do not appear to be significant.

5.5.1. The Future of Embedded WebAssembly

Instead of compromising and accepting the trade-off between having fast, small, native

code versus the potential for code longevity via a cross-platform runtime – has poorer

performance and increases the size of deployed code to IoT devices. What would a

no-compromises solution look like here? The next step for this implementation is

to remove the interpreter and work toward a completely native solution. Several of

the limitations of our vendor agility architecture arise from the first-party vendor

being the only entity capable of maintaining the microkernel and runtime. A no-

compromises solution would remove the need for first-party maintenance, and achieve

better performance, and smaller code sizes. The next step for this design is natively-

executable WebAssembly without the need for a runtime, which would imply the

CPU of these devices can natively run WebAssembly.

Perhaps this idea seems far-fetched; however, it is more possible than it may seem.

Instead of using a microcontroller, a Field Programmable Gate Array (FPGA) based

159



Chapter 5. Implementation

solution would offer a few potential solutions to major shortcomings of the current

design. As a FPGA acts as a programmable CPU, where the internal cells of the

FPGA can be programmed to wire together any arbitrary CPU design, so long as the

FPGA has enough resources.

Thus, a solution that has bare-metal performance would be effectively designing

a WebAssembly CPU using a Hardware Definition Language (HDL) instead of a

general-purpose programming language. This would allow us to create a hardware

architecture designed to perform the WebAssembly parsing, compiling, and execution

functions outlined in this chapter.

Running WebAssembly directly on hardware would open up new design implica-

tions for the architecture discussed in Chapter 4. As we previously discussed in

Section 4.6.1, one of the primary reasons we could not open up lower levels of our

IoT device architecture (Figure 4.3) is due to the inherent need for native code, and

we cannot easily open up maintenance for native code on a potentially proprietary

architecture with proprietary tooling. One of the compromises in the architecture

was to protect the first-party vendor’s intellectual property by providing a clean sep-

aration to a platform-independent runtime that contains first and nth party code.

Using a WebAssembly FPGA solution, an entire operating system can be created in

WebAssembly. Note that for production IoT devices, a FPGA solution would be cost

prohibitive. Instead, we suggest the FPGA solution as the starting point towards

purpose-made hardware that can execute WebAssembly.

160



Chapter 5. Implementation

5.5.2. Longevity

In this chapter, we have created a proof-of-concept to demonstrate the feasibility of

our envisioned architecture for extending IoT device longevity. This is only showing

the proof of concept of a cross-platform runtime for embedded systems, which demon-

strates that maintainers can port code to heterogeneous platforms without much effort

– maintainers do not need proprietary tools and methods under our model.

161



Chapter 6.

Conclusion

The Internet of Things is becoming an integral part of people’s daily lives, and its

value is undeniable. With IoT’s increasing popularity, there will be more devices

manufactured, acquired, and installed in homes worldwide. However, this growth

also means more effort for device vendors who must maintain the software for these

devices, which is less profitable than selling new ones.

If we continue with the current state of affairs in the IoT industry, most IoT devices

will become obsolete to some extent within a few years. We believe this is a result of

artificially created obsolescence. Although the hardware may still function properly,

outdated and vulnerable software will ultimately cause the device to fail prematurely.

This not only contributes to the growing problem of e-waste on our planet [51] but

also poses a threat to the security of IoT systems.

In this thesis, we raised important concerns regarding the IoT ecosystem and its

162



Chapter 6. Conclusion

long-term software maintenance (C1, as discussed in Chapter 3). One major chal-

lenge is the absence of standardized software update systems, which makes it difficult

for companies to create software that can be securely maintained for long periods.

Additionally, continued software support for a device heavily relies on the first-party

vendor, which creates a point-of-failure for the long-term security of IoT devices.

We motivated and presented a blueprint for an alternative IoT software stack specif-

ically designed with longevity in mind (C2, see Chapter 4). Considering the require-

ments of the various stakeholders (e.g., intellectual property, proprietary tooling,

allowing vendors to maintain devices for their support periods), our proposed stack

enables a different party to securely take over software releases once the first-party

vendor is no longer available, capable, or willing. We believe this to be a key contri-

bution toward more long-lasting IoT devices.

We offer a proof of concept implementation of a native WebAssembly runtime (C3,

see Chapter 5) that demonstrates how an IoT vendor can write portable code across

multiple architectures, and more importantly how software can be deployed to devices

even without access to the original development tooling.

In the future, we hope to see the IoT industry confront and resolve the sociotechni-

cal challenges that arise from its operations. There are technological remedies avail-

able that can effectively mitigate these issues, and implementing them may entail

some initial effort but will ultimately benefit our planet in the long term. Prioritizing

the sustainability and well-being of our environment and communities is imperative,

163



Chapter 6. Conclusion

and we believe that the IoT industry has the potential to make a significant and

positive impact in this regard.

164



Bibliography

[1] “LineageOS Android Distribution”, The LineageOS Project, 2023. url: https:

//lineageos.org.

[2] “OpenSSL”, OpenSSL Foundation, Inc. url: https://www.openssl.org/.

[3] “Our decision to wind down amazon halo”, Amazon, 2023. url: https://www.

aboutamazon.com/news/company-news/amazon-halo-discontinued (visited

on 2023).

[4] 17 U.S Code § 1201 - Circumvention of copyright protection systems, USC,

2021.

[5] 37 CFR § 201.40 - Exemptions to prohibition against circumvention, CFR,

2011.

[6] F. J. Acosta Padilla, E. Baccelli, T. Eichinger, and K. Schleiser. The Future of

IoT Software Must be Updated, 2016. url: https://hal.inria.fr/hal-01369681.

165

https://lineageos.org
https://lineageos.org
https://www.openssl.org/
https://www.aboutamazon.com/news/company-news/amazon-halo-discontinued
https://www.aboutamazon.com/news/company-news/amazon-halo-discontinued
https://hal.inria.fr/hal-01369681


Bibliography

[7] S. Albright, P. J. Leach, Y. Gu, Y. Y. Goland, and T. Cai. Simple Service

Discovery Protocol/1.0. Internet-Draft, Internet Engineering Task Force, Nov.

1999. 18 pages.

[8] B. Alliance. WebAssembly System Interface, 2023. url: https://github.com/

WebAssembly/WASI.

[9] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Sok: security evaluation

of home-based IoT deployments. In IEEE S&P, 2019. doi: 10.1109/SP.2019.

00013..

[10] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,

Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C.

Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,

and Y. Zhou. Understanding the mirai botnet:1093–1110, Aug. 2017. url:

https : //www.usenix .org/conference/usenixsecurity17/technical - sessions/

presentation/antonakakis.

[11] App review - app store, Apple, Inc. url: https://developer.apple.com/app-

store/review/.

[12] Apple OTA Updates. url: https ://www.theiphonewiki .com/wiki/OTA_

Updates.

[13] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik.

ASSURED: Architecture for Secure Software Update of Realistic Embedded

166

https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI
https://doi.org/10.1109/SP.2019.00013.
https://doi.org/10.1109/SP.2019.00013.
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
https://www.theiphonewiki.com/wiki/OTA_Updates
https://www.theiphonewiki.com/wiki/OTA_Updates


Bibliography

Devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 37(11), 2018. doi: 10.1109/TCAD.2018.2858422.

[14] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt. RIOT

OS: Towards an OS for the Internet of Things. In 2013 IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), pages 79–80,

Apr. 2013. doi: 10.1109/INFCOMW.2013.6970748.

[15] A. Banafa. Three Major Challenges Facing IoT - IEEE Internet of Things,

2017. url: https : / / iot . ieee . org / newsletter / march - 2017 / three - major -

challenges-facing-iot.html/.

[16] W. Barker. Getting Ready for Post-Quantum Cryptography: Exploring Chal-

lenges Associated with Adopting and Using Post-Quantum Cryptographic Al-

gorithms. Technical report, 2021. doi: 10.6028/nist.cswp.15.

[17] D. Barrera, D. McCarney, J. Clark, and P. C. van Oorschot. Baton: certificate

agility for android’s decentralized signing infrastructure. In Proceedings of the

2014 ACM conference on Security and privacy in wireless & mobile networks.

Association for Computing Machinery, 2014. doi: 10.1145/2627393.2627397.

[18] D. Barrera and P. Van Oorschot. Secure software installation on smartphones.

IEEE Security & Privacy, 9(3), 2010. doi: 10.1109/MSP.2010.202..

[19] J. Bauwens, P. Ruckebusch, S. Giannoulis, I. Moerman, and E. D. Poorter.

Over-the-Air Software Updates in the Internet of Things: An Overview of

167

https://doi.org/10.1109/TCAD.2018.2858422
https://doi.org/10.1109/INFCOMW.2013.6970748
https://iot.ieee.org/newsletter/march-2017/three-major-challenges-facing-iot.html/
https://iot.ieee.org/newsletter/march-2017/three-major-challenges-facing-iot.html/
https://doi.org/10.6028/nist.cswp.15
https://doi.org/10.1145/2627393.2627397
https://doi.org/10.1109/MSP.2010.202.


Bibliography

Key Principles. IEEE Communications Magazine, 58(2), 2020. doi: 10.1109/

MCOM.001.1900125.

[20] A. Bellissimo, J. Burgess, and K. Fu. Secure software updates: disappointments

and new challenges. In First USENIX Workshop on Hot Topics in Security,

July 2006.

[21] C. Bellman and P. C. Van Oorschot. Analysis, implications, and challenges of

an evolving consumer iot security landscape. In 2019 17th International Con-

ference on Privacy, Security and Trust. IEEE, 2019. doi: 10.1109/PST47121.

2019.8949058..

[22] C. Bellman and P. C. van Oorschot. Analysis, Implications, and Challenges

of an Evolving Consumer IoT Security Landscape. en. In 17th International

Conference on Privacy, Security and Trust (PST), pages 1–7, Fredericton, NB,

Canada. IEEE, Aug. 2019. isbn: 978-1-72813-265-5. doi: 10.1109/PST47121.

2019.8949058.

[23] M. Bettayeb, Q. Nasir, and M. A. Talib. Firmware update attacks and security

for iot devices: survey. In Proceedings of the ArabWIC 6th Annual International

Conference Research Track, ArabWIC, Rabat, Morocco. Association for Com-

puting Machinery, 2019. isbn: 9781450360890. doi: 10.1145/3333165.3333169.

[24] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities: the

performance impact of garbage collection. In Proceedings of the Joint Interna-

168

https://doi.org/10.1109/MCOM.001.1900125
https://doi.org/10.1109/MCOM.001.1900125
https://doi.org/10.1109/PST47121.2019.8949058.
https://doi.org/10.1109/PST47121.2019.8949058.
https://doi.org/10.1109/PST47121.2019.8949058
https://doi.org/10.1109/PST47121.2019.8949058
https://doi.org/10.1145/3333165.3333169


Bibliography

tional Conference on Measurement and Modeling of Computer Systems, SIG-

METRICS ’04/Performance ’04, pages 25–36, New York, NY, USA. Associa-

tion for Computing Machinery, 2004. isbn: 1581138733. doi: 10.1145/1005686.

1005693.

[25] C. Bormann, M. Ersue, and A. Keränen. Terminology for Constrained-Node

Networks. RFC 7228, 2014. doi: 10.17487/RFC7228.

[26] C. Bormann, M. Ersue, A. Keränen, and C. Gomez. Terminology for Constrained-

Node Networks. Internet-Draft draft-ietf-lwig-7228bis-00, Internet Engineering

Task Force, June 2022. 27 pages. url: https://datatracker.ietf.org/doc/draft-

ietf-lwig-7228bis/00/. Work in Progress.

[27] A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel, A.

Roger, and R. Sirdey. Towards better availability and accountability for IoT

updates by means of a blockchain. In IEEE Euro S&PW, 2017. doi: 10.1109/

EuroSPW.2017.50.

[28] C. Bradley and D. Barrera. Escaping Vendor Mortality: A New Paradigm

for Extending IoT Device Longevity. To appear in proceedings of the 2023

New Security Paradigms Workshop, NSPW ’23, Segovia, Spain. Association

for Computing Machinery, 2023.

169

https://doi.org/10.1145/1005686.1005693
https://doi.org/10.1145/1005686.1005693
https://doi.org/10.17487/RFC7228
https://datatracker.ietf.org/doc/draft-ietf-lwig-7228bis/00/
https://datatracker.ietf.org/doc/draft-ietf-lwig-7228bis/00/
https://doi.org/10.1109/EuroSPW.2017.50
https://doi.org/10.1109/EuroSPW.2017.50


Bibliography

[29] C. Bradley and D. Barrera. Towards characterizing IoT software update prac-

tices. In Foundations and Practice of Security, pages 406–422. Springer, 2023.

doi: 10.1007/978-3-031-30122-3_25.

[30] P. Break Free From. Brand audit report 2021, 2021. url: https://brandaudit.

breakfreefromplastic.org/brand-audit-2021/.

[31] T. Brydges. Closing the loop on take, make, waste: investigating circular econ-

omy practices in the swedish fashion industry. Journal of Cleaner Production,

293, 2021. doi: 10.1016/j.jclepro.2021.126245.

[32] D. Buentello. Belkin wemo - arbitrary firmware upload, Apr. 2013. url: https:

//www.exploit-db.com/exploits/24924.

[33] WebAssembly Micro Runtime (WAMR), The ByteCode Alliance, 2022. url:

https://github.com/bytecodealliance/wasm-micro-runtime.

[34] R. Chen. If you configure a program to run in windows 2000 compatibility

mode, then it is also vulnerable to windows 2000 security issues, Mar. 2019.

url: https://devblogs.microsoft.com/oldnewthing/20170911-00/?p=96995.

[35] R. Chen. Why not just block the apps that rely on undocumented behavior?,

Dec. 2003. url: https : / /devblogs .microsoft . com/oldnewthing/20031224 -

00/?p=41363.

[36] E. Chung. Companies can - and may - brick your connected devices at any time,

Apr. 2016. url: https://www.cbc.ca/news/science/revolv-bricked-1.3521927.

170

https://doi.org/10.1007/978-3-031-30122-3_25
https://brandaudit.breakfreefromplastic.org/brand-audit-2021/
https://brandaudit.breakfreefromplastic.org/brand-audit-2021/
https://doi.org/10.1016/j.jclepro.2021.126245
https://www.exploit-db.com/exploits/24924
https://www.exploit-db.com/exploits/24924
https://github.com/bytecodealliance/wasm-micro-runtime
https://devblogs.microsoft.com/oldnewthing/20170911-00/?p=96995
https://devblogs.microsoft.com/oldnewthing/20031224-00/?p=41363
https://devblogs.microsoft.com/oldnewthing/20031224-00/?p=41363
https://www.cbc.ca/news/science/revolv-bricked-1.3521927


Bibliography

[37] T. Cooper. Beyond recycling: the longer life option, 1994.

[38] T. Cooper. Inadequate life? evidence of consumer attitudes to product obso-

lescence. Journal of Consumer Policy, 27(4), 2004. doi: 10.1007/s10603-004-

2284-6.

[39] T. Cooper. The significance of product longevity. In. Longer Lasting Products.

Routledge, 2016, pages 3–36.

[40] A. Cui, M. Costello, and S. Stolfo. When firmware modifications attack: a case

study of embedded exploitation. NDSS, 2013. doi: https://doi.org/10.7916/

D8P55NKB.

[41] CVE-2008-4395, National Vulnerability Database. url: https://nvd.nist.gov/

vuln/detail/CVE-2008-4395.

[42] D. DiClerico. Hp inkjet printer lawsuit reaches $5 million settlement, 2010.

url: https://www.consumerreports.org/cro/news/2010/11/hp-inkjet-printer-

lawsuit-reaches-5-million-settlement/index.htm.

[43] E. Dils, J. Bachér, Y. Dams, T. Duhoux, Y. Deng, and T. Teittinen. Electronics

and obsolescence in a circular economy, 2020. url: https : / /www . eionet .

europa . eu/etcs / etc - wmge/products / etc - wmge - reports / electronics - and -

obsolescence-in-a-circular-economy.

171

https://doi.org/10.1007/s10603-004-2284-6
https://doi.org/10.1007/s10603-004-2284-6
https://doi.org/https://doi.org/10.7916/D8P55NKB
https://doi.org/https://doi.org/10.7916/D8P55NKB
https://nvd.nist.gov/vuln/detail/CVE-2008-4395
https://nvd.nist.gov/vuln/detail/CVE-2008-4395
https://www.consumerreports.org/cro/news/2010/11/hp-inkjet-printer-lawsuit-reaches-5-million-settlement/index.htm
https://www.consumerreports.org/cro/news/2010/11/hp-inkjet-printer-lawsuit-reaches-5-million-settlement/index.htm
https://www.eionet.europa.eu/etcs/etc-wmge/products/etc-wmge-reports/electronics-and-obsolescence-in-a-circular-economy
https://www.eionet.europa.eu/etcs/etc-wmge/products/etc-wmge-reports/electronics-and-obsolescence-in-a-circular-economy
https://www.eionet.europa.eu/etcs/etc-wmge/products/etc-wmge-reports/electronics-and-obsolescence-in-a-circular-economy


Bibliography

[44] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible

operating system for tiny networked sensors. In 29th Annual IEEE Interna-

tional Conference on Local Computer Networks, pages 455–462, Nov. 2004.

doi: 10.1109/LCN.2004.38.

[45] S. El Jaouhari and E. Bouvet. Secure firmware Over-The-Air updates for IoT:

Survey, challenges, and discussions. Internet of Things, 18, 2022. doi: 10.1016/

j.iot.2022.100508.

[46] End of service and instructions for a standalone option, Io, Monitor, 2023.

url: https://www.monitor-io.com/.

[47] ESP-IDF: FreeRTOS (Overview). url: https://docs.espressif.com/projects/

esp-idf/en/latest/esp32/api-reference/system/freertos.html.

[48] ESP32-C3-DevKitM-1. url: https://docs.espressif.com/projects/esp-idf/en/

latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html.

[49] European Commission. Directorate General for the Environment. and Ricardo

AEA Ltd. The durability of products: standard assessment for the circular

economy under the eco innovation action plan. Publications Office, 2015. url:

https://data.europa.eu/doi/10.2779/37050.

[50] Bill C-244 441 An Act to amend the Copyright Act (diagnosis, maintenance

and repair), Federal Trade Commission, 2023.

172

https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1016/j.iot.2022.100508
https://doi.org/10.1016/j.iot.2022.100508
https://www.monitor-io.com/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitm-1.html
https://data.europa.eu/doi/10.2779/37050


Bibliography

[51] V. Forti, C. P. Baldé, R. Kuehr, and G. Bel. The global e-waste monitor 2020.

Quantities, flows, and the circular economy potential, 2020.

[52] S. Gibbs. Is the year 2038 problem the new y2k bug?, Dec. 2014. url: https:

//www.theguardian.com/technology/2014/dec/17/is-the-year-2038-problem-

the-new-y2k-bug.

[53] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman,

L. Wagner, A. Zakai, and J. Bastien. Bringing the web up to speed with we-

bassembly. In Proceedings of the 38th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI, pages 185–200, Barcelona,

Spain. Association for Computing Machinery, 2017. isbn: 9781450349888. doi:

10.1145/3062341.3062363.

[54] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes. Operating Systems for Low-

End Devices in the Internet of Things: A Survey. IEEE Internet of Things

Journal, 3(5):720–734, Oct. 2016. issn: 2327-4662. doi: 10.1109/JIOT.2015.

2505901.

[55] X. He, S. Alqahtani, R. Gamble, and M. Papa. Securing over-the-air iot firmware

updates using blockchain. In Proceedings of the International Conference on

Omni-Layer Intelligent Systems, COINS ’19, pages 164–171, Crete, Greece.

Association for Computing Machinery, 2019. isbn: 9781450366403. doi: 10.

1145/3312614.3312649.

173

https://www.theguardian.com/technology/2014/dec/17/is-the-year-2038-problem-the-new-y2k-bug
https://www.theguardian.com/technology/2014/dec/17/is-the-year-2038-problem-the-new-y2k-bug
https://www.theguardian.com/technology/2014/dec/17/is-the-year-2038-problem-the-new-y2k-bug
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1145/3312614.3312649
https://doi.org/10.1145/3312614.3312649


Bibliography

[56] J. L. Hernández-Ramos, G. Baldini, S. N. Matheu, and A. Skarmeta. Updat-

ing IoT devices: challenges and potential approaches. In 2020 Global Internet

of Things Summit (GIoTS). IEEE, 2020. doi: 10.1109/GIOTS49054.2020.

9119514.

[57] S. Higginbotham. The internet of trash [internet of everything]. IEEE Spec-

trum, 55, 2018. doi: 10.1109/MSPEC.2018.8362218.

[58] S. Higginbotham. The iot’s e-waste problem isn’t inevitable, July 2021. url:

https://spectrum.ieee.org/the-iots-ewaste-problem-isnt-inevitable.

[59] J. Hsu. Why the military can’t quit windows xp, June 2018. url: https://

slate.com/technology/2018/06/why-the-military-cant-quit-windows-xp.html.

[60] M. Ibrahim, A. Continella, and A. Bianchi. Aot - attack on things: a secu-

rity analysis of iot firmware updates. In Proceedings of the IEEE European

Symposium on Security and Privacy (EuroS&P), July 2023.

[61] Information technology – Programming languages – C. Standard, International

Organization for Standardization, Geneva, CH, 2018.

[62] S. Jiang, K. A. Britt, A. J. McCaskey, T. S. Humble, and S. Kais. Quantum

annealing for prime factorization. Scientific Reports, 8(1), 2018. doi: 10.1038/

s41598-018-36058-z.

174

https://doi.org/10.1109/GIOTS49054.2020.9119514
https://doi.org/10.1109/GIOTS49054.2020.9119514
https://doi.org/10.1109/MSPEC.2018.8362218
https://spectrum.ieee.org/the-iots-ewaste-problem-isnt-inevitable
https://slate.com/technology/2018/06/why-the-military-cant-quit-windows-xp.html
https://slate.com/technology/2018/06/why-the-military-cant-quit-windows-xp.html
https://doi.org/10.1038/s41598-018-36058-z
https://doi.org/10.1038/s41598-018-36058-z


Bibliography

[63] F. Jindal, R. Jamar, and P. Churi. Future and challenges of internet of things.

Int. J. Comput. Sci. Inf. Technol, 10(2):13–25, 2018. doi: 10.5121/ijcsit.2018.

10202.

[64] T. Karthik, A. Brown, S. Awwad, D. McCoy, R. Bielawski, C. Mott, S. Lau-

zon, A. Weimerskirch, and J. Cappos. Uptane: securing software updates for

automobiles. In The 14th escar Europe, 2016.

[65] M. Khurana, T. P. Singh, and T. Choudhury. Effective threat and security

modelling approach to devise security rating of diverse IoT devices. In Data

Driven Approach Towards Disruptive Technologies, pages 583–593. Springer

Singapore, 2021. doi: 10.1007/978-981-15-9873-9_46.

[66] K. Kiningham, M. Horowitz, P. Levis, and D. Boneh. Cesel: securing a mote

for 20 years. In Proceedings of the 2016 International Conference on Embedded

Wireless Systems and Networks, EWSN ’16, pages 307–312, Graz, Austria.

Junction Publishing, 2016. isbn: 9780994988607.

[67] G. Klein, M. Norrish, T. Sewell, H. Tuch, S. Winwood, K. Elphinstone, G.

Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, and

R. Kolanski. seL4: formal verification of an OS kernel. en. In Proceedings of

the ACM SIGOPS 22nd symposium on Operating systems principles - SOSP

’09, page 207, Big Sky, Montana, USA. Association for Computing Machinery,

2009. isbn: 978-1-60558-752-3. doi: 10.1145/1629575.1629596.

175

https://doi.org/10.5121/ijcsit.2018.10202
https://doi.org/10.5121/ijcsit.2018.10202
https://doi.org/10.1007/978-981-15-9873-9_46
https://doi.org/10.1145/1629575.1629596


Bibliography

[68] A. Langiu, C. A. Boano, M. Schuss, and K. Romer. UpKit: an open-source,

portable, and lightweight update framework for constrained IoT devices. In

2019 IEEE 39th International Conference on Distributed Computing Systems

(ICDCS). IEEE, July 2019. doi: 10.1109/icdcs.2019.00207.

[69] O. Leiba, Y. Yitzchak, R. Bitton, A. Nadler, and A. Shabtai. Incentivized de-

livery network of iot software updates based on trustless proof-of-distribution.

In 2018 IEEE European Symposium on Security and Privacy Workshops (Eu-

roS&PW), pages 29–39, 2018. doi: 10.1109/EuroSPW.2018.00011.

[70] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and P.

Levis. Multiprogramming a 64kB Computer Safely and Efficiently. In Proceed-

ings of the 26th Symposium on Operating Systems Principles. Association for

Computing Machinery, 2017. doi: 10.1145/3132747.3132786.

[71] A. Levy, B. Campbell, B. Ghena, P. Pannuto, P. Dutta, and P. Levis. The case

for writing a kernel in rust. In Proceedings of the 8th Asia-Pacific Workshop on

Systems, APSys ’17, Mumbai, India. Association for Computing Machinery,

2017. isbn: 9781450351973. doi: 10.1145/3124680.3124717.

[72] B. Li, H. Fan, Y. Gao, and W. Dong. Bringing webassembly to resource-

constrained iot devices for seamless device-cloud integration. In Proceedings

of the 20th Annual International Conference on Mobile Systems, Applications

and Services, MobiSys ’22, pages 261–272, Portland, Oregon. Association for

176

https://doi.org/10.1109/icdcs.2019.00207
https://doi.org/10.1109/EuroSPW.2018.00011
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3124680.3124717


Bibliography

Computing Machinery, 2022. isbn: 9781450391856. doi: 10 .1145/3498361 .

3538922.

[73] J. Liedtke. On micro-kernel construction. ACM SIGOPS Operating Systems

Review, 29(5):237–250, 1995.

[74] Lightweight machine to machine technical specification: core, 2019. url: https:

//www.openmobilealliance.org/release/LightweightM2M/V1_1_1-20190617-

A/OMA-TS-LightweightM2M_Core-V1_1_1-20190617-A.pdf.

[75] Linux 2.6.31 rc3: security vulnerabilities, CVE Details. url: https://www.

cvedetails.com/version/446073/Linux-Linux-Kernel-2.6.31-rc3.html.

[76] R. Liu, L. Garcia, and M. Srivastava. Aerogel: Lightweight Access Control

Framework for WebAssembly-Based Bare-Metal IoT Devices. In 2021 IEEE/ACM

Symposium on Edge Computing (SEC). IEEE, 2021. doi: 10.1145/3453142.

3491282.

[77] N. Mäkitalo, T. Mikkonen, C. Pautasso, V. Bankowski, P. Daubaris, R. Mikkola,

and O. Beletski. WebAssembly modules as lightweight containers for liquid IoT

applications. In Lecture Notes in Computer Science, pages 328–336. Springer

International Publishing, 2021. doi: 10.1007/978-3-030-74296-6_25.

[78] N. D. Matsakis and F. S. Klock. The rust language. 34(3), 2014. issn: 1094-

3641. doi: 10.1145/2692956.2663188.

177

https://doi.org/10.1145/3498361.3538922
https://doi.org/10.1145/3498361.3538922
https://www.openmobilealliance.org/release/LightweightM2M/V1_1_1-20190617-A/OMA-TS-LightweightM2M_Core-V1_1_1-20190617-A.pdf
https://www.openmobilealliance.org/release/LightweightM2M/V1_1_1-20190617-A/OMA-TS-LightweightM2M_Core-V1_1_1-20190617-A.pdf
https://www.openmobilealliance.org/release/LightweightM2M/V1_1_1-20190617-A/OMA-TS-LightweightM2M_Core-V1_1_1-20190617-A.pdf
https://www.cvedetails.com/version/446073/Linux-Linux-Kernel-2.6.31-rc3.html
https://www.cvedetails.com/version/446073/Linux-Linux-Kernel-2.6.31-rc3.html
https://doi.org/10.1145/3453142.3491282
https://doi.org/10.1145/3453142.3491282
https://doi.org/10.1007/978-3-030-74296-6_25
https://doi.org/10.1145/2692956.2663188


Bibliography

[79] B. Moran, Ø. Rønningstad, and A. Tsukamoto. Mandatory-to-Implement Al-

gorithms for Authors and Recipients of Software Update for the Internet of

Things manifests. Internet-Draft draft-ietf-suit-mti-01, Internet Engineering

Task Force, July 2023. 10 pages. url: https://datatracker.ietf.org/doc/draft-

ietf-suit-mti/01/. Work in Progress.

[80] B. Moran, H. Tschofenig, and H. Birkholz. A Manifest Information Model for

Firmware Updates in Internet of Things (IoT) Devices. RFC 9124, Jan. 2022.

[81] B. Moran, H. Tschofenig, D. Brown, and M. Meriac. A Firmware Update

Architecture for Internet of Things. Request for Comments RFC 9019, Internet

Engineering Task Force, 2021. doi: 10.17487/RFC9019.

[82] CMOS Integrated Circuits Databook. Third printing. Motorola Inc. 1978, pages 7–

129 – 7–132.

[83] P.-E. Moyse. The uneasy case of programmed obsolescence. UNB Law Journal,

71:61, 2020.

[84] S. Murakami, M. Oguchi, T. Tasaki, I. Daigo, and S. Hashimoto. Lifespan of

Commodities, Part I. Journal of Industrial Ecology, 14(4), 2010. doi: 10.1111/

j.1530-9290.2010.00250.x.

[85] Network Time Protocol (Version 3) Specification, Implementation and Anal-

ysis. RFC 1305, Mar. 1992. doi: 10.17487/RFC1305.

178

https://datatracker.ietf.org/doc/draft-ietf-suit-mti/01/
https://datatracker.ietf.org/doc/draft-ietf-suit-mti/01/
https://doi.org/10.17487/RFC9019
https://doi.org/10.1111/j.1530-9290.2010.00250.x
https://doi.org/10.1111/j.1530-9290.2010.00250.x
https://doi.org/10.17487/RFC1305


Bibliography

[86] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser, I. Khoffi,

J. Cappos, and B. Ford. CHAINIAC: proactive Software-Update transparency

via collectively signed skipchains and verified builds. In 26th USENIX Security

Symposium (USENIX Security 17), pages 1271–1287, Vancouver, BC. USENIX

Association, Aug. 2017. isbn: 978-1-931971-40-9. url: https://www.usenix.

org/conference/usenixsecurity17/technical-sessions/presentation/nikitin.

[87] Nixing the Fix: An FTC Report to Congress on Repair Restrictions, Federal

Trade Commission, 2021.

[88] nRF52840 DK, Nordic Semiconductor, 2021. url: https://infocenter.nordicsemi.

com/pdf/nRF52840_PS_v1.7.pdf.

[89] T. OConnor, W. Enck, and B. Reaves. Blinded and confused: uncovering sys-

temic flaws in device telemetry for smart-home internet of things. In Proceed-

ings of the 12th Conference on Security and Privacy in Wireless and Mobile

Networks, WiSec ’19, pages 140–150, Miami, Florida. Association for Comput-

ing Machinery, 2019. isbn: 9781450367264. doi: 10.1145/3317549.3319724.

[90] M. O. Ojo, S. Giordano, G. Procissi, and I. N. Seitanidis. A review of low-end,

middle-end, and high-end iot devices. IEEE Access, 6:70528–70554, 2018. doi:

10.1109/ACCESS.2018.2879615.

[91] M. T. Paracha, D. J. Dubois, N. Vallina-Rodriguez, and D. Choffnes. Iotls: un-

derstanding tls usage in consumer iot devices. In Proceedings of the 21st ACM

179

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.7.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.7.pdf
https://doi.org/10.1145/3317549.3319724
https://doi.org/10.1109/ACCESS.2018.2879615


Bibliography

Internet Measurement Conference, IMC ’21, pages 165–178, Virtual Event.

Association for Computing Machinery, 2021. isbn: 9781450391290. doi: 10.

1145/3487552.3487830.

[92] J. Peters. Google discontinues its google nest secure alarm system, 2020. url:

https://www.theverge.com/2020/10/19/21523967/google-discontinues-nest-

secure-alarm-system.

[93] M. Pizzetti, L. Gatti, and P. Seele. Firms talk, suppliers walk: analyzing the

locus of greenwashing in the blame game and introducing ‘vicarious green-

washing’. Journal of Business Ethics, 170(1), 2019. doi: 10.1007/s10551-019-

04406-2.

[94] V. Prakash, S. Xie, and D. Y. Huang. Software Update Practices on Smart

Home IoT Devices. en, Sept. 2022. url: http://arxiv.org/abs/2208.14367

(visited on 10/04/2022).

[95] Qualys SSL Labs, Qualys Inc. url: https://www.ssllabs.com/.

[96] L. F. Rahman, T. Ozcelebi, and J. Lukkien. Understanding IoT systems: a

life cycle approach. Procedia Computer Science, 2018. issn: 1877-0509. doi:

10.1016/j.procs.2018.04.148.

[97] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Had-

dadi. Information exposure from consumer iot devices: a multidimensional,

network-informed measurement approach. In Proceedings of the Internet Mea-

180

https://doi.org/10.1145/3487552.3487830
https://doi.org/10.1145/3487552.3487830
https://www.theverge.com/2020/10/19/21523967/google-discontinues-nest-secure-alarm-system
https://www.theverge.com/2020/10/19/21523967/google-discontinues-nest-secure-alarm-system
https://doi.org/10.1007/s10551-019-04406-2
https://doi.org/10.1007/s10551-019-04406-2
http://arxiv.org/abs/2208.14367
https://www.ssllabs.com/
https://doi.org/10.1016/j.procs.2018.04.148


Bibliography

surement Conference, IMC ’19, pages 267–279, Amsterdam, Netherlands. As-

sociation for Computing Machinery, 2019. isbn: 9781450369480. doi: 10.1145/

3355369.3355577.

[98] A. Rossberg, editor. Webassembly specification release 2.0, 2023. url: https:

//webassembly.github.io/spec/core/_download/WebAssembly.pdf.

[99] H. C. Rudolph and N. Grundmann. TLS ciphersuite search, Ciphersuite Info.

url: https://ciphersuite.info/.

[100] N. Sajn. Briefing: Right to Repair, 2022. url: https://www.europarl.europa.

eu/RegData/etudes/BRIE/2022/698869/EPRS_BRI(2022)698869_EN.pdf.

[101] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine. Survivable key com-

promise in software update systems. In 17th ACM CCS. Association for Com-

puting Machinery, 2010. doi: 10.1145/1866307.1866315.

[102] Secure software updates, Apple Inc., 2021. url: https://support.apple.com/

en-ca/guide/security/secf683e0b36/web.

[103] M. R. Shahid, G. Blanc, Z. Zhang, and H. Debar. Iot devices recognition

through network traffic analysis. In 2018 IEEE International Conference on

Big Data (Big Data), pages 5187–5192, 2018. doi: 10.1109/BigData.2018.

8622243.

[104] R. W. Shirey. Internet Security Glossary, Version 2. RFC 4949, Aug. 2007.

doi: 10.17487/RFC4949.

181

https://doi.org/10.1145/3355369.3355577
https://doi.org/10.1145/3355369.3355577
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf
https://ciphersuite.info/
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698869/EPRS_BRI(2022)698869_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698869/EPRS_BRI(2022)698869_EN.pdf
https://doi.org/10.1145/1866307.1866315
https://support.apple.com/en-ca/guide/security/secf683e0b36/web
https://support.apple.com/en-ca/guide/security/secf683e0b36/web
https://doi.org/10.1109/BigData.2018.8622243
https://doi.org/10.1109/BigData.2018.8622243
https://doi.org/10.17487/RFC4949


Bibliography

[105] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts, Sev-

enth Edition. John Wiley & Sons, Dec. 2004, page 921. isbn: 978-0471694663.

[106] M. R. Stead, P. Coulton, J. G. Lindley, and C. Coulton. The little book of

sustainability for the internet of things, 2019.

[107] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: eternal war in memory.

In 2013 IEEE Symposium on Security and Privacy, pages 48–62, 2013. doi:

10.1109/SP.2013.13.

[108] A. S. Tanenbaum and H. Bos. Modern Operating Systems. Pearson, Upper

Saddle River, NJ, 4th edition, Mar. 2014. isbn: 978-0133591620.

[109] The Rust Core Library, 2023. url: https://doc.rust-lang.org/core.

[110] L. Torvalds. Linux 2.6.31 released, Sept. 2009. url: https://www.linux.com/

news/linux-2631-released/.

[111] L. Torvalds. Linux kernel mailing list: media commit causes user space to

misbahave, 2012. url: https://lkml.org/lkml/2012/12/23/75 (visited on

2023).

[112] D. Tracey and C. Sreenan. OMA LWM2m in a holistic architecture for the

internet of things. In 2017 IEEE 14th International Conference on Networking,

Sensing and Control (ICNSC). IEEE, 2017. doi: 10.1109/icnsc.2017.8000091.

[113] H. Tschofenig and S. Farrell. Report from the Internet of Things Software

Update (IoTSU) Workshop 2016. RFC 8240, 2017. doi: 10.17487/RFC8240.

182

https://doi.org/10.1109/SP.2013.13
https://doc.rust-lang.org/core
https://www.linux.com/news/linux-2631-released/
https://www.linux.com/news/linux-2631-released/
https://lkml.org/lkml/2012/12/23/75
https://doi.org/10.1109/icnsc.2017.8000091
https://doi.org/10.17487/RFC8240


Bibliography

[114] H. Tschofenig, R. Housley, and B. Moran. Firmware Encryption with SUIT

Manifests. Internet-Draft, Internet Engineering Task Force, Oct. 2021. 19 pages.

[115] S. Vasile, D. Oswald, and T. Chothia. Breaking All the Things—A System-

atic Survey of Firmware Extraction Techniques for IoT Devices. In Smart

Card Research and Advanced Applications, Lecture Notes in Computer Sci-

ence. Springer, 2019. doi: 10.1007/978-3-030-15462-2_12.

[116] S. Vaughan-Nichols. No ink, no scan: canon usa printers hit with class-action

suit, 2021. url: https : / /www . zdnet . com/ article / untrustworthy - canon -

printer-lawsuit/.

[117] A. Wang, R. Liang, X. Liu, Y. Zhang, K. Chen, and J. Li. An inside look

at IoT malware. In Industrial IoT Technologies and Applications, LNICST.

Springer, 2017. doi: 10.1007/978-3-319-60753-5_19.

[118] Wasmer, 2023. url: https://wasmer.io/.

[119] Wasmtime, 2023. url: https://wasmtime.dev/.

[120] E. Wen and G. Weber. Wasmachine: bring iot up to speed with a webassem-

bly os. In 2020 IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops), pages 1–4, 2020. doi: 10.

1109/PerComWorkshops48775.2020.9156135.

183

https://doi.org/10.1007/978-3-030-15462-2_12
https://www.zdnet.com/article/untrustworthy-canon-printer-lawsuit/
https://www.zdnet.com/article/untrustworthy-canon-printer-lawsuit/
https://doi.org/10.1007/978-3-319-60753-5_19
https://wasmer.io/
https://wasmtime.dev/
https://doi.org/10.1109/PerComWorkshops48775.2020.9156135
https://doi.org/10.1109/PerComWorkshops48775.2020.9156135


Bibliography

[121] G. Wurster and P. C. van Oorschot. The developer is the enemy. In Proceed-

ings of the 2008 New Security Paradigms Workshop, NSPW ’08, pages 89–

97. Association for Computing Machinery, 2008. isbn: 9781605583419. doi:

10.1145/1595676.1595691.

[122] J.-Y. Yu and Y.-G. Kim. Analysis of IoT platform security: a survey. In In-

ternational Conference on Platform Technology and Service (PlatCon), 2019.

doi: 10.1109/PlatCon.2019.8669423.

[123] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli. Secure

firmware updates for constrained iot devices using open standards: a real-

ity check. IEEE Access, 7:71907–71920, 2019. doi: 10.1109/ACCESS.2019.

2919760..

[124] P. Zdankin and T. Weis. Longevity of smart homes. In 2020 IEEE Interna-

tional Conference on Pervasive Computing and Communications Workshops

(PerCom Workshops), pages 1–2, 2020. doi: 10.1109/PerComWorkshops48775.

2020.9156155.

[125] H. Zhang, A. Anilkumar, M. Fredrikson, and Y. Agarwal. Capture: centralized

library management for heterogeneous IoT devices. In 30th USENIX Security

Symposium (USENIX Security 21), pages 4187–4204. USENIX Association,

Aug. 2021. isbn: 978-1-939133-24-3. url: https://www.usenix.org/conference/

usenixsecurity21/presentation/zhang-han.

184

https://doi.org/10.1145/1595676.1595691
https://doi.org/10.1109/PlatCon.2019.8669423
https://doi.org/10.1109/ACCESS.2019.2919760.
https://doi.org/10.1109/ACCESS.2019.2919760.
https://doi.org/10.1109/PerComWorkshops48775.2020.9156155
https://doi.org/10.1109/PerComWorkshops48775.2020.9156155
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-han
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-han


Appendix A.

WebAssembly Demo Program

This demo program1 uses SPI on the host to interact with an OLED display. The spe-

cific display we used is a Newhaven NHD-0420DZW-AY5. Note that to this particular

display will not work with SPI by default, it instead uses a 6800 parallel interface.

Several jumpers on the back of the display need to be de-soldered and re-soldered to

short specific pads, refer to the “Jumper Selections” table of the datasheet.

To ensure the WebAssembly binary that is emitted by this listing is small enough

to fit in an embedded device’s memory, ensure that the binary is built as follows:

• Build as a release build to ensure that debug symbols are not included

cargo build –target=wasm32-unknown-unknown –release

• Optionally use the wasm-opt tool to ensure the sign extension is not part of the
1Available for download at
https://www.cisl.carleton.ca/~cbradley/data/snippets/wasm_spi_demo.rs

185

https://www.cisl.carleton.ca/~cbradley/data/snippets/wasm_spi_demo.rs


Appendix A. WebAssembly Demo Program

resulting wasm binary

wasm-opt --signext-lowering \

-Os target/wasm32-unknown-unknown/release/demo\_wasm.wasm \

-o demo\_wasm.wasm

1 // External functions implemented by the host

2 #[ link( wasm_import_module = "host ")]

3 extern "C" {

4 // Transfers data via a SPI peripheral initalized by the host

5 fn spi_transfer(ptr: *const u8, len: i32);

6

7 // Performs a delay

8 fn delay(ms: u32);

9 }

10

11 struct Spi {}

12 impl Spi {

13 fn transfer (&mut self , words: &mut [u8]) -> Result <&[u8], ()> {

14 unsafe {

15 spi_transfer(words.as_ptr (), words.len() as i32);

16 }

17 Ok(&[0 as u8])

18 }

19 }

20 // Writes a "command" instruction to the SPI display with a payload

21 fn write_command(spi: &mut Spi , cmd: u8) {

22 let mut packet = [0; 2];

23

186



Appendix A. WebAssembly Demo Program

24 // Specify a command instruction

25 // RS = 0, RW = 0

26 packet [0] = 0b0000_0000;

27

28 // Set the command bits

29 packet [0] |= (cmd & 0b1111_1100) >> 2;

30 packet [1] |= (cmd & 0b0000_0011) << 6;

31

32 // Transfer the command via the peripheral

33 spi.transfer (&mut packet).unwrap ();

34 }

35

36 // Writes a "data" instruction to the SPI display witih a payload

37 fn write_data(spi: &mut Spi , data: u8) {

38 let mut packet = [0; 2];

39

40 // Specify data instruction

41 // RS = 1, RW = 0

42 packet [0] = 0b1000_0000;

43

44 // Set the data bits

45 packet [0] |= (data & 0b1111_1100) >> 2;

46 packet [1] |= (data & 0b0000_0011) << 6;

47

48 spi.transfer (&mut packet).unwrap ();

49 }

50

51 // Moves to a specific position on the SPI display

52 fn move_to_command(x: u8 , y: u8) -> u8 {

53 // Corresponds to the first index of each row of the 4 row display

54 // derived from datasheet

55 let row_address = match y {

187



Appendix A. WebAssembly Demo Program

56 0 => 0x00 ,

57 1 => 0x40 ,

58 2 => 0x14 ,

59 3 => 0x54 ,

60 _ => 0x00 ,

61 };

62 let mut position_address = row_address + x;

63

64 // Datasheet: the position change command has db7 high

65 // bits from db6 -db0 are the address

66 position_address |= 0b1000_0000;

67 position_address

68 }

69

70 #[ no_mangle ]

71 pub fn main() {

72 // Create SPI peripheral (with enforced ownership)

73 let mut spi = Spi {};

74

75 // Perform display initalization sequence

76 write_command (&mut spi , 0b0011_1011); // function set

77 write_command (&mut spi , 0x06); //entry mode set

78 write_command (&mut spi , 0x02); // return home

79 write_command (&mut spi , 0x01); //clear display

80 write_command (&mut spi , 0x0c); // display on

81 write_command (&mut spi , 0x80); //line 1 character 1

82

83 // CGRAM is stored in positions 0x00 through 0x07 of the font table.

84 // Therefore , to write the first CGRAM character to the display , you would

85 // move the cursor to the desired DDRAM location on the display and write

character data 0x00.

86

188



Appendix A. WebAssembly Demo Program

87 // Set CGRAM Address in address counter to 0x00

88 write_command (&mut spi , 0x40);

89 // Create custom character (vertical line on left edge for box drawing)

90 write_data (&mut spi , 0b0001_0000);

91 write_data (&mut spi , 0b0001_0000);

92 write_data (&mut spi , 0b0001_0000);

93 write_data (&mut spi , 0b0001_0000);

94 write_data (&mut spi , 0b0001_0000);

95 write_data (&mut spi , 0b0001_0000);

96 write_data (&mut spi , 0b0001_0000);

97 write_data (&mut spi , 0b0001_0000);

98 let box_draw_bar_left: u8 = 0x00; // cgram 0

99

100 write_command (&mut spi , 0x48);

101 // Create custom character (vertical line on right edge for box drawing)

102 write_data (&mut spi , 0b0000_0001);

103 write_data (&mut spi , 0b0000_0001);

104 write_data (&mut spi , 0b0000_0001);

105 write_data (&mut spi , 0b0000_0001);

106 write_data (&mut spi , 0b0000_0001);

107 write_data (&mut spi , 0b0000_0001);

108 write_data (&mut spi , 0b0000_0001);

109 write_data (&mut spi , 0b0000_0001);

110 let box_draw_bar_right: u8 = 0x01; // cgram 1

111

112 // Other box drawing characters (from font table )

113 let box_draw_upper_left: u8 = 0b1100_1001;

114 let box_draw_upper_right: u8 = 0b1100_1010;

115 let box_draw_lower_right: u8 = 0b1100_1100;

116 let box_draw_lower_left: u8 = 0b1100_1011;

117

118 let box_draw_upper_line: u8 = 0b1011_1111;

189



Appendix A. WebAssembly Demo Program

119 let box_draw_lower_line: u8 = 0b0101_1111;

120

121 let message = "HELLO FROM WASM";

122 let mut msg_position = 1;

123

124 write_command (&mut spi , 0b0000_0001);

125

126 // Draw upper box

127 write_command (&mut spi , move_to_command (0, 0));

128 write_data (&mut spi , box_draw_upper_left);

129 for _i in 0..18 {

130 write_data (&mut spi , box_draw_upper_line);

131 }

132 write_data (&mut spi , box_draw_upper_right);

133

134 // Draw lower box

135 write_command (&mut spi , move_to_command (0, 3));

136 write_data (&mut spi , box_draw_lower_left);

137

138 for _i in 0..18 {

139 write_data (&mut spi , box_draw_lower_line);

140 }

141 write_data (&mut spi , box_draw_lower_right);

142

143 // Left box edge

144 write_command (&mut spi , move_to_command (0, 1));

145 write_data (&mut spi , box_draw_bar_left);

146 write_command (&mut spi , move_to_command (0, 2));

147 write_data (&mut spi , box_draw_bar_left);

148

149 // Right box edge

150 write_command (&mut spi , move_to_command (19, 1));

190



Appendix A. WebAssembly Demo Program

151 write_data (&mut spi , box_draw_bar_right);

152 write_command (&mut spi , move_to_command (19, 2));

153 write_data (&mut spi , box_draw_bar_right);

154

155 // Box drawn , begin main loop:

156 loop {

157 // Clear display

158 if (msg_position + message.len()) > (18 + message.len()) {

159 msg_position = (0 - message.len()) + 2;

160

161 for i in 1..19 {

162 write_command (&mut spi , move_to_command(i, 1));

163 write_data (&mut spi , ’ ’ as u8);

164 }

165 }

166

167 // Draw data inside the box

168 // Clear row\

169 write_command (&mut spi , move_to_command (1, 1));

170 let mut i: usize = 0;

171 if msg_position > 1 {

172 write_command (&mut spi , move_to_command (( msg_position - 1) as u8 , 1));

173 write_data (&mut spi , ’ ’ as u8);

174 }

175

176 for char in message.chars() {

177 // Calculate the position of the current character on the screen

178 let position = i + msg_position;

179

180 // Is the character in bounds?

181 if position > 0 && position <= 18 {

182 if i == 0 {

191



Appendix A. WebAssembly Demo Program

183 write_command (&mut spi , move_to_command(position as u8, 1));

184 }

185

186 write_data (&mut spi , char as u8);

187 }

188

189 i += 1;

190 }

191

192 write_command (&mut spi , 0x80);

193 msg_position += 1;

194

195 // Pause before next loop

196 unsafe {

197 delay (500);

198 }

199 }

200 }

Listing A.1: WebAssembly SPI demonstration program

192



List of Abbreviations

ABI Application Binary Interface. 80

API Application Programming Interface. 48, 67, 79, 86, 101, 106, 115, 151, 155

ARM Advanced RISC Machines. 133

ASSURED Architecture for Secure Software Update of Realistic Embedded Devices.

32

BIOS Basic Input/Output System. 85

BLE Bluetooth Low Energy. 20

CA Certificate Authority. 106, 107

CDN Content Delivery Network. 66, 67

CMOS Complementary metal–oxide–semiconductor. 155

CoAP Constrained Application Protocol. 25

193



List of Abbreviations

CPU Central Processing Unit. 13, 63, 135, 160

CS Chip Select. 153

CVE Common Vulnerabilities and Exposures. 52

DB Database. 46

DNS Domain Name System. 50, 118

DTLS Datagram Transport Layer Security. 25

ECID Electronic Control Identification. 68

ECU Engine Control Unit. 24

FPGA Field Programmable Gate Array. 159, 160

FTC Federal Trade Commission. 125

GB Gigabyte. 43, 46

GPIO General Purpose Input/Output. 155, 156

HAL Hardware Abstraction Layer. 111, 114, 134, 135, 137, 138

HDL Hardware Definition Language. 160

194



List of Abbreviations

HTTP Hypertext Transfer Protocol. 41, 42, 44–46, 49–52, 55, 56, 60–62, 65, 67, 69,

70

HTTPS Hypertext Transfer Protocol Secure. 68

IANA Internet Assigned Numbers Authority. 48

IETF Internet Engineering Task Force. x, 13, 23, 31–33, 71, 79, 81, 91

IoT Internet of Things. i, ii, vi, x, 2–9, 11–17, 20, 22–26, 29, 30, 32–34, 38–44, 47–50,

52, 54, 55, 57, 58, 60, 61, 63, 65, 70–72, 74–134, 157, 160, 162, 163

IP Internet Protocol. 12, 112

IPC Inter-Process Communication. 18

ISA Instruction Set Architecture. 133, 155

ISO International Organization for Standardization. 138

JSON JavaScript Object Notation. 43

KB Kilobyte. 71

LAN Local Area Network. 41

LLVM Low Level Virtual Machine. 92, 93

195



List of Abbreviations

LZMA Lempel-Ziv-Markov chain Algorithm. 63

MCU Microcontroller. 135, 137

MIPS Microprocessor without Interlocked Pipeline Stages. 63

MITM Machine-in-the-Middle. 57, 63–65

MMU Memory Management Unit. 15–17, 148

MPU Memory Protection Unit. 15, 17

NT Windows NT. 4

NTP Network Time Protocol. 2, 107

OLED Organic light-emitting diode. 148, 151, 152, 155

OS Operating System. 16, 19, 63, 78, 108, 109, 111, 113, 115, 116, 119

OTA Over-the-Air. 110

OTW One-Time Write. 110

PC Personal Computer. 85

PFS Perfect Forward Secrecy. 48

PROM Programmable Read-Only Memory. 19

196



List of Abbreviations

RAM Random Access Memory. 13, 15, 16, 46, 71, 79, 136

RFC Request for Comments. 14, 15, 31, 55

RISC Reduced Instruction Set Computing. 133, 151

ROM Read-Only Memory. 19

RTOS Real-Time Operating System. 19

SDK Software Development Kit. 109

SoC System on a Chip. 134

SoK Systematization of Knowledge. 70

SPI Serial Peripheral Interface. 112, 136, 148, 149, 152, 155, 156

SRAM Static Random-Access Memory. 135

SSD Solid State Drive. 19

SSDP Simple Service Discovery Protocol. 54, 68, 69

SUIT Software Updates for Internet of Things. x, 23, 31–33, 71, 81, 82, 91

TCB Trusted Computing Base. 79, 112, 116

TCP Transmission Control Protocol. 12

197



List of Abbreviations

TLS Transport Layer Security. x, 42–50, 56–61, 70–72, 102, 106, 107

TTL Transistor–Transistor Logic. 155

TUF The Update Framework. 24, 25, 32

TV Television. 51, 55, 56, 62, 65, 67

UART Universal Asynchronous Receiver / Transmitter. 112

UDP User Datagram Protocol. 49, 60

UK United Kingdom. 42

URL Uniform Resource Locator. 55, 62, 65, 67, 69

US United States. 42

USB Universal Serial Bus. 110

VM Virtual Machine. 35, 46

WAMR WebAssembly Micro Runtime. 115, 116, 138

WASI WebAssembly System Interface. 115

WASM WebAssembly. 133, 156

WAT WebAssembly Text format. 37

198



List of Abbreviations

XML Extensible Markup Language. 43, 56, 62, 65

199


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Code Listings
	Introduction
	Motivation
	Problem
	Contributions
	Related Publications

	Background
	The Internet of Things
	Resource-Constrained Devices

	Operating Systems for IoT Devices
	Protecting Memory
	Monolithic Kernel
	Microkernel
	Firmware

	Longevity and Durability of Software
	Software Updates
	Software Update Schemes for IoT

	Longevity of Software Update Schemes
	Criteria for Longevity of Software Update Schemes
	Longevity Comparison of Software Update Schemes

	WebAssembly

	Software Updates in IoT: An Empirical Study
	Introduction
	Methodology
	Data Extraction
	Data Analysis

	Results
	Update Keywords Results
	Update Events Results
	Observed Update Design Patterns
	Cipher Suite Results
	Limitations

	Case Studies
	D-Link Camera Firmware
	Apple TV Firmware
	WeMo Update Service

	Related Work
	Conclusion

	Extending IoT Device Longevity
	Introduction
	On IoT Software and Firmware Updates
	Software Update Schemes for IoT
	Device Vendors as a Single (and Complex) Point of Failure
	Software Updates within Walled Gardens

	Non-Solutions to IoT Longevity
	Software Updates as a Paid Service
	Device Leasing Model
	Release of Source Code and Tooling
	Unified IoT Protocols
	Open-source IoT Frameworks
	IoT Recycling

	Longevity and Durability in IoT Device Software
	Obsolescence and the IoT Lifecycle

	Towards IoT Device Longevity
	What Makes a Long-lasting System?
	The ``I'' in IoT Stands for Impermanence
	Inspiration from Previous Paradigm Shifts

	A New Paradigm for IoT Device Longevity
	Addressing the Maintenance Burden
	Detecting First-Party Vendor Failure
	Vendor Agility
	Transition Security

	Discussion
	Right to Repair
	Towards a Circular IoT Economy
	Sustainable Design

	Conclusion

	Implementation
	Implementation Goals
	Memory Safety
	WebAssembly Implementation Scope
	Implementation Challenges

	Implementation of a WebAssembly Runtime
	Parsing WebAssembly
	Executing WebAssembly
	Memory Management

	Proof of Concept on Embedded Systems
	Interfacing With Host Functionality
	Implementation on a RISC-V Target
	Implementation on an ARM Target

	Security Measures
	Discussion and Future Work
	The Future of Embedded WebAssembly
	Longevity


	Conclusion
	Bibliography
	Appendices
	WebAssembly Demo Program
	List of Abbreviations

