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Abstract William Findlay

Abstract

System introspection is becoming an increasingly attractive option for maintaining operating
system stability and security. This is primarily due to the many recent advances in system
introspection technology; in particular, the 2013 introduction of Extended Berkeley Packet
Filter (eBPF ) into the Linux Kernel [63, 64] along with the recent development of more
usable interfaces such as the BPF Compiler Collection (bcc) [29] has resulted in a highly
compelling, performant, and (perhaps most importantly) safe subsystem for both kernel and
userland instrumentation.

The scope, safety, and performance of eBPF system introspection has potentially powerful
applications in the domain of computer security. In order to demonstrate this, I present
ebpH, an eBPF implementation of Somayaji’s [58] Process Homeostasis (pH ). ebpH is an
intrusion detection system (IDS) that uses eBPF programs to instrument system calls and
establish normal behavior for processes, building a profile for each executable on the system;
subsequently, ebpH can warn the user when it detects process behavior that violates the
established profiles. Experimental results show that ebpH can detect anomalies in process
behavior with negligible overhead. Furthermore, ebpH’s anomaly detection comes with zero
risk to the system thanks to the safety guarantees of eBPF, rendering it an ideal solution
for monitoring production systems.

This thesis will discuss the design and implementation of ebpH along with the technical
challenges which occurred along the way. It will then present experimental data and per-
formance benchmarks that demonstrate ebpH’s ability to monitor process behavior with
minimal overhead. Finally, it will conclude with a discussion on the merits of eBPF IDS
implementations and potential avenues for future work therein.

ebpH is licensed under GPLv2 and full source code is available at https://github.com/
willfindlay/ebph.
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1 Introduction and Motivation William Findlay

1 Introduction and Motivation

As our computer systems grow increasingly complex, so too does it become more difficult
to gauge precisely what they are doing at any given moment. Modern computers are often
running hundreds, if not thousands of processes at any given time, the vast majority of
which are running silently in the background. As a result, users often have a very limited
notion of what exactly is happening on their systems, especially beyond that which they
can actually see on their screens. An unfortunate corollary to this observation is that users
also have no way of knowing whether their system may be misbehaving at a given moment,
whether due to a malicious actor, buggy software, or simply some unfortunate combination
of circumstances.

Recently, a lot of work has been done to help bridge this gap between system state and visi-
bility, particularly through the introduction of powerful new tools such as Extended Berkeley
Packet Filter (eBPF). Introduced to the Linux Kernel in a 2013 RFC and subsequent kernel
patch [63, 64], eBPF offers a promising interface for kernel introspection, particularly given
its scope and unprecedented level of safety therein; although eBPF can examine any data
structure or function in the kernel through the instrumentation of tracepoints, its safety is
guaranteed via a bytecode verifier. What this means in practice is that eBPF effectively pro-
vides unlimited, highly performant, production-safe system introspection capabilities that
can be used to monitor as much or as little system state as desired.

Certainly, eBPF offers unprecedented system state visibility, but this is only scratching the
surface of what this technology is capable of. With nearly limitless tracing capabilities,
powerful applications can be constructed to enhance system security, stability, and perfor-
mance. In theory, these applications can perform much of their work autonomously in the
background, but are equally capable of functioning in a more interactive role, keeping the
end user informed about changes in system state, particularly if these changes in state are
undesired. To that end, I propose ebpH (a portmanteau of eBPF and pH), an anomaly
detection system based entirely on eBPF that monitors process state in the form of system
call sequences. By building and maintaining per-executable behavior profiles, ebpH can dy-
namically detect when processes are behaving outside of the status quo, and notify the user
so that they can understand exactly what is going on.

A prototype of ebpH has been written using the Python interface provided by the BPF Com-
piler Collection (bcc) [29], and preliminary tests show that it is capable of monitoring system
state under moderate to heavy workloads with negligible overhead. What’s more, zero kernel
panics occurred during ebpH’s development and early testing, which simply would not have

1



2 Background William Findlay

been possible without the safety guarantees that eBPF provides. The rest of this proposal
will cover the necessary background material required to understand ebpH, describe several
aspects of its implementation, including the many findings and pitfalls encountered along
the way, and discuss the planned methodology for testing and iterating on this prototype
going forward.

2 Background

In the following sections, I will provide the necessary background information needed to
understand ebpH; this includes an overview of system introspection and tracing techniques
on Linux including eBPF itself, and some background on system calls and intrusion detection.

While my work is primarily focused on the use of eBPF for maintaining system security
and stability, the working prototype for ebpH borrows heavily from Anil Somayaji’s pH or
Process Homeostasis [58], an anomaly-based intrusion detection and response system written
as a patch for Linux Kernel 2.2. As such, I will also provide some background on the original
pH system and many of the design choices therein.

2.1 An Overview of the Linux Tracing Landscape

System introspection is hardly a novel concept; for years, developers have been thinking
about the best way to solve this problem and have come up with several unique solutions,
each with a variety of benefits and drawbacks. Table 2.1 presents an overview of some
prominent examples relevant to GNU/Linux systems.

These technologies can, in general, be classified into a few broad categories (Figure 2.1),
albeit with potential overlap depending on the tool:

1) Userland libraries;
2) ptrace-based instrumentation;
3) Loadable kernel modules;
4) Kernel subsystems.

2



2 Background William Findlay

Table 2.1: A summary of various system introspection technologies available for
GNU/Linux systems.

name Interface and Implementation Citations

strace Uses the ptrace system call to trace an invidivual
userspace process

[67, 68]

ltrace Uses the ptrace system call to trace library calls in an
individual userland process

[9, 53]

SystemTap Dynamically generates loadable kernel modules for instru-
mentation; newer versions can optionally use eBPF as a
backend instead

[44, 51]

ftrace Sysfs pseudo filesystem for tracepoint instrumentation lo-
cated at /sys/kernel/debug/tracing

[52]

perf_events Linux subsystem that collects performance events and re-
turns them to userspace

[76]

LTTng Loadable kernel modules, userland libraries [40]
dtrace4linux A Linux port of DTrace via a loadable kernel module [19]
sysdig Loadable kernel modules for system monitoring; native

support for containers
[70]

eBPF In-kernel execution of pre-verified, JIT-compiled bytecode [22, 29, 63, 64]

Figure 2.1: A high level overview of the broad categories of Linux instrumentation.
This does not represent a complete picture of all available tools and interfaces, but
instead presents many of the most popular ones. Note how eBPF covers every presented
use case.

3



2 Background William Findlay

Applications such as strace [67, 68] or gdb [21] which make use of the ptrace system call are
certainly a viable option for limited system introspection with respect to specific processes.
However, this does not represent a complete solution, as the user is limited to monitoring the
system calls made by a process to communicate with the kernel, its memory, and the state
of its registers, rather than the underlying kernel functions themselves [50]. The scope of
ptrace-based solutions is also limited by ptrace’s lack of scalability; ptrace’s API is conducive
to tracing single processes at a time rather than tracing processes system wide. Its limited
scale becomes even more obvious when considering the high amount of context-switching
between kernel space and user space required when tracing multiple processes or threads,
especially when these processes and threads make many hundreds of system calls per second
[34].

Although library call instrumentation through software such as ltrace [9, 53] does not nec-
essarily suffer from the same performance issues as described above, it still constitutes a
suboptimal solution for many use cases due to its limited scope. In order to be effective and
provide a complete picture of what exactly is going on during a given process’ execution,
library tracing needs to be combined with other solutions. In fact, ltrace does exactly this;
when the user specifies the -S flag, ltrace uses the ptrace system call to provide strace-like
system call tracing functionality.

LKM-based implementations such as sysdig [70] and SystemTap [51] offer an extremely deep
and powerful tracing solution given their ability to instrument the entire system, including
the kernel itself. Their primary detriment is a lack of safety guarantees with respect to
the modules themselves. No matter how vetted or credible a piece of software might be,
running it natively in the kernel always comports with an inherent level of risk; buggy code
might cause system failure, loss of data, or other unintended and potentially catastrophic
consequences. Additionally, such kernel-module-based solutions are highly reliant on specific
versions of the Linux kernel; changes to Linux’s API may cause them to break, which in turn
requires updates; these updates then increase the risk of introducing bugs into the codebase,
which may in turn lead to the aforementioned consequences of code failure in kernelspace.

Custom tracing solutions through kernel modules carry essentially the same risks. No sane
manager would consent to running untrusted, unvetted code natively in the kernel of a
production system; the risks are simply too great and far outweigh the benefits. Instead,
such code must be carefully examined, reviewed, and tested, a process which can potentially
take months. What’s more, even allowing for a careful testing and vetting process, there is
always some probability that a bug can slip through the cracks, resulting in the catastrophic
consequences outlined above.

4



2 Background William Findlay

Built-in kernel subsystems for instrumentation seem to be the most desirable choice of any of
the presented solutions. In fact, eBPF [63, 64] itself constitutes one such solution. However,
for the time being, I will focus on a few others, namely ftrace [52] and perf_events [76]
(eBPF programs actually can and do use both of these interfaces anyway). While both of
these solutions are safe to use (assuming the system can trust the root user), they suffer from
limited documentation and relatively poor user interfaces. These factors in tandem mean
that ftrace and perf_events, while quite useful for a variety of system introspection needs,
are less extensible than other approaches.

2.1.1 Comparing eBPF and Dtrace

It is worth spending a bit more time comparing eBPF with Dtrace, as both APIs are quite
full-featured and designed with similar functionality in mind. The original Dtrace [8] was
designed in 2004 for Solaris and lives on to this day in several operating systems, including
Solaris, FreeBSD, MacOS X [26], and Linux [19] (the dtrace4linux implementation will be
examined with more scrutiny later in this section).

In general, the original Dtrace and the current version of eBPF share much of the same
functionality and cover similar use cases [8, 63, 64]. This includes perhaps most notably
dynamic instrumentation in both userspace and kernelspace, arbitrary context instrumenta-
tion (i.e. the ability to instrument essentially any aspect of the system), and guarantees of
safety and data integrity. The difference between the two systems generally boils down to
the following points [25, 26]:

1) eBPF supports a superset of Dtrace’s functionality;
2) Dtrace provides only a high level interface, while eBPF provides both low level and

high level interfaces (see Figure 2.2);
3) Dtrace is useful for writing one-liner scripts, but not for writing more complex pro-

grams;
4) eBPF is natively supported in Linux, while Dtrace ports are purely LKM-based.

dtrace4linux [19] is a free and open source port of Sun’s Dtrace [8] for the Linux Kernel,
implemented as a loadable kernel module (LKM). While Dtrace offers a powerful API for
full-system tracing, its usefulness is, in general, eclipsed by that of eBPF [24] and requires
extensive shell scripting for use cases beyond one-line tracing scripts. In contrast, with the
help of powerful and easy to use front ends like bcc [29], developing complex eBPF programs
for a wide variety of use cases is becoming an increasingly painless process.

Not only does eBPF cover more complex use cases than Dtrace, but it also provides support

5



2 Background William Findlay

Figure 2.2: Comparing Dtrace and eBPF functionality with respect to API design
(adapted from [24]). Note that eBPF covers more complex use cases and supports both
low level and high level APIs. Dtrace needs to be used in tandem with shell scripting
to support more complex use cases.

for simple one-line programs through tools like bpftrace [24, 30] which has been designed
to provide a high-level Dtrace-like tracing language for Linux using eBPF as a backend.
Although bpftrace only provides a subset of Dtrace’s functionality [24], its feature set has
been carefully curated in order to cater to the most common use cases and more functionality
is being added on an as-needed basis.

Additional work is being done to fully reimplement Dtrace as a new BPF program type
[74] which will further augment eBPF’s breadth and provide full backward compatibility
for existing Dtrace scripts to work with eBPF. This seems to be by far the most promising
avenue for Linux Dtrace support thus far, as it seeks to combine the higher level advantages
of Dtrace with the existing eBPF virtual machine.

2.2 Classic BPF

In 1992, McCanne and Jacobson [41] introduced the original BPF5 or Berkeley Packet Filter
as a mechanism for capturing, monitoring, and filtering network traffic in the BSD kernel.
Classic BPF’s primary insights were two-fold:

1) Network traffic events are frequent and fast, and therefore an efficient filtering mecha-
nism was needed;

2) A limited, register-based bytecode being run in an in-kernel virtual machine provides
5Hereafter, I will refer to the original BPF as Classic BPF to avoid confusion with eBPF and the BPF

programming paradigm.
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precisely the mechanism described in point (1).

The virtual machine described above was used to implement the filter component of BPF,
while in-kernel network function tracepoints implemented the tap component. The tap for-
warded packet events to the filter, which then decided what to do with the packets according
to a user-defined BPF program. McCanne and Jacobson showed that their approach was
much faster than other contemporary packet filtering techniques, namely NIT [47] and CSPF
[45].

While Classic BPF is certainly a powerful technique for filtering packets, Starovoitov [63,
64] realized that its tap and filter mechanism represented a desirable approach for general
system introspection. Therefore, in 2013, he proposed Extended BPF (eBPF), a superset of
Classic BPF, which vastly increased the capabilities of the original BPF virtual machine.

Since its original introduction, eBPF has offered a consistent, powerful, and production-
safe mechanism for general Linux introspection and continues to improve rapidly over time.
eBPF is discussed in more detail in the following section.

2.3 eBPF: Linux Tracing Superpowers

In 2016, eBPF was described by Brendan Gregg [23] as nothing short of Linux tracing super-
powers. I echo that sentiment here, as it summarizes eBPF’s capabilities perfectly. Through
eBPF programs, one can simultaneously trace userland symbols and library calls, kernel
functions and data structures, and hardware performance. What’s more, through an even
newer subset of eBPF, known as XDP or Express Data Path [27], one can inspect, modify,
redirect, and even drop packets entirely before they even reach the main kernel network
stack. Figure 2.3 provides a high level overview of these use cases and the corresponding
eBPF instrumentation required.

The advantages of eBPF extend far beyond scope of traceability; eBPF is also extremely
performant, and runs with guaranteed safety. In practice, this means that eBPF is an ideal
tool for use in production environments and at scale.

Safety is guaranteed with the help of an in-kernel verifier that checks all submitted bytecode
before its insertion into the BPF virtual machine. While the verifier does limit what is
possible (eBPF in its current state is not Turing complete), it is constantly being improved;
for example, a recent patch [66] that was mainlined in the Linux 5.3 kernel added support
for verified bounded loops, which greatly increases the computational possibilities of eBPF.
The verifier will be discussed in further detail in Section 2.3.3.
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Figure 2.3: A high level overview of various eBPF use cases. Note the high level of
flexibility that eBPF provides with respect to system tracing.

eBPF’s superior performance can be attributed to several factors. On supported architec-
tures,6 eBPF bytecode is compiled into machine code using a just-in-time (JIT ) compiler;
this both saves memory and reduces the amount of time it takes to insert an eBPF program
into the kernel. Additionally, since eBPF runs in-kernel and communicates with userland via
direct map access and perf events, the number of context switches required between userland
and the kernel is greatly diminished, especially compared to approaches such as the ptrace
system call.

2.3.1 How eBPF Works at a High Level

From the perspective of a user, the eBPF workflow is surprisingly simple. Users can elect to
write eBPF bytecode directly (not recommended) or use one of many front ends to write in
higher level languages that are then used to generate the respective bytecode. IOVisor’s bcc
[29] offers bindings for several languages including Python, Go, and C++; users write eBPF
programs in C and interact with bcc’s API in order to generate eBPF bytecode and submit

6x86-64, SPARC, PowerPC, ARM, arm64, MIPS, and s390 [17]
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it to the kernel.

Figure 2.4 presents an overview of eBPF’s architecture and dataflow, including the interaction
between userspace programs, eBPF programs in kernelspace, and the rest of the kernel.
This interaction occurs via the bpf(2) system call [7] which is used to load and verify BPF
programs, issue commands to BPF programs, and interact with eBPF maps. These maps
are the mechanism for sending data between BPF programs and other BPF programs or
BPF programs and userspace.

There are several map types available in eBPF which cover a wide variety of use cases.
These map types along with a brief description are provided in Table 2.2. Thanks to this
wide arsenal of maps, eBPF developers have a powerful set of both general-purpose and
specialized data structures at their disposal; as shown in coming sections, many of these
maps are quite versatile and have use cases beyond what might initially seem pertinent. For
example, the ARRAY map type may be used to initialize large data structures to be copied into
a general purpose HASH (refer to Listing A.1 in Appendix A). This can be effectively used to
bypass the verifier’s stack space limitations, which are discussed in detail in Section 2.3.3.

2.3.2 Tracepoints, Kprobes, and Uprobes

As shown previously in Figure 2.3 on page 8, eBPF supports a number of distinct program
types which may be used to instrument and interact with various aspects of system func-
tionality. ebpH’s functionality mainly relies on three specific program types: the tracepoint,
the kprobe, and the uprobe [25, 29]. Here, I will describe what each program type does and
how they work at a high level. These concepts will be revisited frequently when discussing
ebpH’s implementation in Section 3.

Tracepoints. Tracepoints [25] define the stable kernel tracing API of eBPF; at a high
level, they are predefined sections in kernel code that trap to eBPF handlers when these
handlers are defined. Tracepoints are stable in the sense that the information exposed to
eBPF by a tracepoint will not be likely to change between kernel versions, which means that
they are ideal for use in production where forward compatibility with new versions of Linux
is a desirable property. Although using tracepoints is ideal when possible, they have a few
caveats; in particular, a limited number of tracepoints are defined by the kernel, and they
do not cover an exhaustive list of kernel functionality. Linux 5.5 defines 1,872 tracepoints in
total.

ebpH uses tracepoints to implement the bulk of its kernelspace functionality (c.f. Section 3.4
and Section 3.5). System call tracepoints are used to track system call sequences for its
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Figure 2.4: Basic topology of eBPF with respect to userland and the kernel. Note the
bidirectional nature of dataflow between userspace and kernelspace using maps.

Table 2.2: Various map types [25, 29] available in eBPF programs, as of Linux 5.5.

Map Type Description

HASH A hashtable of key-value pairs
ARRAY An array indexed by integers; members are zero-initialized
PROG_ARRAY A specialized array to hold file descriptors to other BPF programs; used for

tail calls
PERF_EVENT_ARRAY Holds perf event counters for hardware monitoring
PERCPU_HASH Like HASH but stores a different copy for each CPU context
PERCPU_ARRAY Like ARRAY but stores a different copy for each CPU context
STACK_TRACE Stores stack traces for userspace or kernerlspace functions
CGROUP_ARRAY Stores pointers to cgroups
LRU_HASH Like a HASH except least recently used values are removed to make space
LRU_PERCPU_HASH Like LRU_HASH but stores a different copy for each CPU context
LPM_TRIE A "Longest Prefix Matching" trie optimized for efficient traversal
ARRAY_OF_MAPS An ARRAY of file descriptors into other maps
HASH_OF_MAPS A HASH of file descriptors into other maps
DEVMAP Maps the ifindex of various network devices; used in XDP programs
SOCKMAP Holds references to sock structs; used for socket redirection
CPUMAP Allows for redirection of packets to remote CPUs; used in XDP programs
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anomaly detection functionality; scheduler tracepoints are used to maintain the set of traced
processes and to associate these processes with the correct profiles.

Kprobes. Whereas tracepoints define a stable kernel tracing API, kprobes [25] can be
though of as their dynamic counterparts. Although kprobes may be used to trace any
exported kernel function (that is, any kernel function that is not in-lined by the compiler),
they are not considered stable as the API of a kprobe changes whenever the corresponding
kernel function changes. Thus, tracepoints are preferred when possible and kprobes are
generally used as a last resort. Kprobes work by inserting a breakpoint at a specific address
in kernel memory; when this breakpoint is hit, the kernel traps to the associated BPF
handler. Kprobes can also be used to instrument function returns, in which case they are
known as kretprobes.

ebpH uses only one kretprobe, and does so to keep track of when processes receive a signal
that would trap to a signal handler (c.f. Section 3.5.3).

Uprobes. Uprobes and uretprobes work in a similar fashion to kprobes and kretprobes; the
primary difference here is that we are now instrumenting userspace rather than kernelspace.
A breakpoint is inserted at the target userspace address and this breakpoint traps to the
appropriate BPF handler.

ebpH uses uprobes to implement sending complex commands to the BPF program from a
userspace library (c.f. Section 3.3.3).

2.3.3 The Verifier: The Good, the Bad, and the Ugly

The verifier is responsible for eBPF’s unprecedented safety given its scope, one of its most
attractive qualities with respect to system tracing. While this verifier is quintessential to
the safety of eBPF, it is not without its drawbacks. In this section, I describe how the
verifier works, its nuances and drawbacks, and recent work that has been done to improve
the verifier’s support for increasingly complex eBPF programs.

Proving the safety of arbitrary code is by definition a difficult problem. This is thanks in
part to theoretical limitations on what is actually provable; a famous example is the halting
problem described by Turing circa 1937 [73]. This difficulty is further compounded by stricter
requirements for safety in the context of an eBPF program; in particular, developers don’t
want BPF programs to crash or otherwise damage the kernel [17].

To illustrate the importance of this problem of safety with respect to eBPF, let us consider

11



2 Background William Findlay

a simple example. We will again consider the halting problem described above. Suppose we
have two eBPF programs, program A and program B, that each hook onto a mission-critical
kernel function (schedule(), for example). The only difference between these two programs
is that program A always terminates, while program B runs forever without stopping. What
this means in practice is that the call to schedule() will never succeed, and program B

effectively constitutes a denial of service attack [28] on our system, intentional or otherwise;
allowing untrusted users to load this code into our kernel spells immediate disaster for our
system.

By the same token, unbounded memory access attempts within a BPF program may per-
mit buffer overflows, which may in turn be manipulated to gain arbitrary code execution in
kernelspace [10] (the kind that actually can damage the system). In order to aid static anal-
ysis of memory access, the verifier prohibits memory access using registers with unbounded
values. For example, accessing an array with induction variable i in a for loop would be
prohibited unless it could be shown that this variable’s set of possible values exists within a
memory-safe range.

While I have established that verifying the safety of eBPF programs is an important problem
to solve, the question remains as to whether it is possible to solve. For the reasons outlined
above, this problem should intuitively seem impossible, or at least far more difficult than
should be feasible. So, what can the verifier do? The answer is to change the rules to
make it easier. In particular, while it is difficult to prove that the set of all possible eBPF
programs are safe, it is much easier7 to prove this property for a subset of all eBPF programs.
Figure 2.5 depicts the relationship between potentially valid eBPF code and verifiably valid
eBPF code.

The immediate exclusion of eBPF programs meeting certain criteria is the crux of eBPF’s
safety guarantees. Unfortunately, it also rather intuitively limits what developers are actually
able to do with eBPF programs. In particular, eBPF is not a Turing complete language;
it prohibits arbitrary jump instructions, cycles in execution graphs, and unverified memory
access. Further, eBPF limits stack allocations to only 512 bytes [25] – far too small for many
practical use cases. From a security perspective, these limitations are a good thing, because
they allow us to immediately exclude eBPF programs with unverifiable safety; but from a
usability standpoint, particularly that of a new eBPF developer, the trade-off is not without
its drawbacks.

Fortunately, the eBPF verifier is getting better over time (Figure 2.6). When I say better,
7Easier here means computationally easier, certainly not trivial.
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Figure 2.5: The set participation of valid C and eBPF programs. Valid eBPF programs
written in C constitute a small subset of all valid C programs. Verifiably valid eBPF
programs constitute an even smaller subset therein.

Figure 2.6: Complexity and verifiability of eBPF programs. Safety guarantees for
eBPF programs rely on certain compromises. Ideally the relationship would be as
shown on the bottom; in practice, the relationship is getting closer over time, but is still
far from the ideal.
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what I mean is that it is able to prove the safety of increasingly complex programs. Perhaps
the best example of this steady improvement is a recent kernel patch [66] that added support
for bounded loops in eBPF programs. With this patch, the set of viable eBPF programs
was greatly increased; in fact, ebpH in its current incarnation relies heavily on bounded loop
support. Prior to bounded loops, eBPF programs relied on unrolling loops at compile time,
a technique that was both slow and highly limited. This is just one example of the critical
work that is being done to improve the verifier and thus improve eBPF as a whole.

2.4 System Calls

ebpH (and the original pH system upon which it is based) works by instrumenting system
calls in order to establish behavioral patterns for all binaries running on the system. Un-
derstanding pH and ebpH requires a reliable mental model of what a system call is and how
programs use them to communicate with the kernel.

At the time of writing this thesis, the Linux Kernel [72] supports an impressive 439 distinct
system calls, and this number generally grows with subsequent releases. In general, userspace
libraries such as the C standard library implement a subset of these system calls, with the
exact specifications varying depending on architecture. These system calls are used to request
services from the operating system kernel; for example, a program that needs to write to
a file would make an open call to receive a file descriptor into that file, followed by one or
more write calls to write the necessary data, and finally a close call to clean up the file
descriptor. These system calls form the basis for much of our process behavior, from I/O
as seen above, to process management, memory management, and even the execution of
binaries themselves.

Critically, from a security perspective, system calls provide the interface to the kernel’s
reference monitor [2, 32, 48], an abstraction that refers to the kernel’s facilities for mediating
access by subjects (i.e. users and their processes) onto system objects (i.e. security-sensitive
resources). This means that system calls provide a highly representative picture of a given
process’ attempts to access resources that we care about – whether this access is valid or
otherwise.

Through the instrumentation of system calls, we can establish a clear outline of exactly
how a process is behaving, the critical operations it needs to perform, and how these opera-
tions interact with one another. In fact, system call-based instrumentation forms a primary
use case for several of the tracing technologies previously discussed in Section 2.1, perhaps
most notably strace. We will discuss the behavioral implications of system calls further in
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Section 2.6.1.

2.5 Intrusion Detection

The concept of intrusion detection has seen prevalent attention in academic work since the
early 1980’s [3, 13, 14]. At a high level, intrusion detection systems (IDS) strive to monitor
systems at a particular level and use observed data to make decisions about the legitimacy
of these observations [33]. Intrusion detection systems can be broadly classified into several
categories based on data collection, detection technique(s), and response. Figure 2.7 presents
a broad and incomplete overview of these categories.

In general, intrusion detection systems can either attempt to detect anomalies (i.e. mis-
matches in behavior when compared to normally observed patterns) or misuse-based, which
generally refers to matching known attack patterns to observed data [33, 48]. In general,
anomaly-based approaches cover a wider variety of attacks while misuse-based approaches
tend to yield fewer false positives. Misuse-based approaches can also be further broken
down into specification-based and signature-based, which deal in behavioral blacklists and
whitelists respectively. A hybrid approach between any of these techniques is also possible.

Data collection is generally either host-based or network based. Network-based IDSes ex-
amine network traffic and analyze it to detect attacks or anomalies. In contrast, host-based
IDSes analyze the state of the local system [33, 58].

Responses can vary significantly based on the system, but can be classified into two main
categories: alerts and counter-attacks. Systems can either choose to alert an administrator
about the potential issue, or choose to mount counter-measures to defeat or mitigate the
perceived attack [33]. Naturally, systems also have the option to take a hybrid approach
here.

Using the above metrics, ebpH can be broadly classified as a host-based anomaly detection
system that responds to anomalies by issuing alerts. This is generally quite similar to
the original pH (Section 2.6) with one major exception: As we will see, the original pH
also responds to anomalies by delaying system calls outright and preventing anomalous
execve(2) calls [58]. Implementing this functionality in ebpH is a topic for future work
(c.f. Section 5.2.2), and currently ebpH only supports the anomaly detection aspect of its
predecessor.
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Figure 2.7: A broad overview of the basic categories of IDS. The current version of
ebpH can be classified according to the categories that have been underlined. Note
that intrusion detection system classification can often be more nuanced than the basic
overview presented here. However, this should present a good enough overview to
understand IDSes in the context of ebpH.
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2.5.1 A Survey of Data Collection in Intrusion Detection Systems

We have presented the general classification of intrusion detection systems through the es-
tablishment of three core elements of an IDS and several categories therein. As it relates to
eBPF, the data collection component of intrusion detection systems is of particular interest;
what is especially exciting about eBPF is its impressive scope, safety, and performance with
respect to general system introspection; this presents a perfect trifecta of traits for collecting
system data. As such, it is worth examining data collection techniques from various intrusion
detection systems in more detail.

We have established that data collection in intrusion detection systems can primarily be
separated into two relatively broad categories:

1) host-based data collection which involves collecting data about the use and behavior
of a local machine;

2) network-based data collection which involves monitoring network traffic and looking
for established patterns.

While the above two categories are generally sufficient for understanding intrusion detection
at a high level, there are in fact several distinct subcategories therein. Figure 2.8 presents
an overview of the most common data collection subcategories in IDSes.

Internal and External Sensors. Kerschbaum et al. [35] introduce the concept of inter-
nal sensors for intrusion detection and contrast them with the far more popular external
sensors. An internal sensor by definition is included in the source code of a monitored
component, while an external sensor is implemented outside of the monitored component.
These two categories of sensors each present unique advantages and disadvantages [35]. In
particular, external sensors are easily modifiable and extensible, although they introduce
potential delays, and are generally weaker to tampering by intruders; internal sensors mini-
mize overhead (assuming correct implementation) and are much more resistant to intruder
tampering, but suffer from reduced portability, difficulty in implementation, and may incur
severe performance penalties if implemented incorrectly.

eBPF would fall under the internal sensor classification [35] due to its implementation within
the Linux Kernel; however, eBPF presents a rather unique case, as it overcomes many of the
disadvantages proposed by Kerschbaum et al. while maintaining the advantages. Specifically,
eBPF is completely application transparent, portable to any modern version of Linux8, easy

8Although eBPF is available on all modern kernels, some of its features are specific to the very newest
versions. In particular, recent verifier updates which allow for increased complexity have only been available
since version 5.3. See Section 2.3 and Section 2.3.3 for more details.
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Figure 2.8: An overview of the most common data collection categories and subcat-
egories in IDS, as well as a potentially new and promising category, general system
introspection, thanks to eBPF. This figure primarily synthesizes the technologies pre-
sented in [35, 62].
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to update and modify, and has guaranteed performance and safety due to the verifier.

Internal Host-Based Approaches. System call pattern analysis was examined in detail
by Forrest et al. [18] and culminated in the development of the original pH system [58] on
which ebpH is based. Somayaji and Inoue [59] compared two methods of organizing system
call data for intrusion detection (full sequences and lookahead pairs), which we will discuss
further in Section 2.6.1.

Kerschbaum et al. also describe a generic method of application-specific internal sensors
through the addition of audit checks in program source code [35]. However, the primary
caveat here is that such checks need to be integrated into a specific application early enough
such that refactoring is minimized [35, 49]. This approach is also far less generic than other
internal sensor approaches described here.

Another potential internal source for data is through host-based network stack introspection.
Classic BPF [41] and eBPF/XDP [27, 29, 63, 64] are quite excellent at this. Host-based
network introspection allows the analysis of network traffic at various points in the kernel’s
networking stack, and XDP packet redirection [27] allows fast detection and response before
a packet even reaches the main networking stack.

ebpH itself constitutes an internal host-based approach; that is, it uses eBPF for in-kernel
instrumentation of system calls (internal) on a given host (host-based). As we discuss in
Section 5.2.6, a potential avenue for future research in ebpH is moving beyond system call
monitoring to general system introspection (c.f. Figure 2.8). This is specifically a possibility
due to eBPF’s unique classification as an internal sensor capable of monitoring the entire
system dynamically, safely, and with minimal overhead.

External Host-Based Approaches. External host-based data collection is very popular
in intrusion detection. This can be primarily attributed due to the advantages described by
Kerschbaum et al. [35], particularly with respect to ease of implementation and portability.

AAFID [61] uses a combined internal/external approach based on separate autonomous
agents running continuously on multiple hosts. These agents make use of various data
sources, such as external programs (i.e. ps, netstat, and df), file system state, and network
interface packet capture (i.e. hooking into the host’s networking stack). Agents supplement
collected data by analyzing audit logs generated by the system [35].

In 1999, Kuperman and Spafford [36] proposed the use of library interpolation for intrusion
detection in dynamically linked binaries. Library interpolation is a method of interposing
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a custom library implementation between a dynamically linked executable and its shared
objects. This effectively allows the generation of custom audit data on each library call that
a process makes.

Internal and External Network-Based Approaches. Network-based approaches [62]
to intrusion detection involve the inspection of network traffic en route to its destination.
This typically comes in the form of inspecting packets headers, payloads, and frequency to
establish patterns for analysis. Generally, network-based approaches have a choice between
using either inline (internal) sensors, or passive (external) sensors for data collection [62].
An inline sensor either hooks into a network device, or is built into specialized hardware;
traffic passes directly through the sensor and is analyzed directly.

In contrast, passive sensors create copies of network traffic for analysis. This approach is
typically favored since it does not introduce delays into the traffic itself, instead sacrificing
the ability to respond to threats before they reach their destination [62]. This result is
consistent with Kerschbaum et al.’s observation that external sensor approaches tend to be
favored over their internal counterparts [35].

2.5.2 eBPF and XDP for Network Intrusion Detection

Most work in eBPF-based intrusion detection leverages its network monitoring capabilities.
Rather than a host-based approach to data collection, these solutions generally fall within the
network-based category; for instance, an eBPF/XDP filter may be set up at a strategic point
within a network to analyze incoming traffic. ntopng [15] uses BPF tracepoints and kprobes
to analyze incoming TCP traffic, and error injection to reject bad connections. Cloudflare
has built DDoS mitigation systems [5, 16] which use XDP [27] to enforce automatically
generated policies before packets enter the main kernel networking stack. Suricata [69, 77]
provides optional support for eBPF and XDP to optimize its network intrusion detection
stack performance and to enable it to drop packets earlier than otherwise would have been
possible. While these solutions have been shown to be efficient and effective against network-
based attacks, none of them focuses on protecting the host itself. Since eBPF can be used
to monitor all aspects of system behavior, this represents a small subset of eBPF’s potential
use cases in the field of intrusion detection. ebpH has been designed to rectify this gap in
the research.
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2.6 Process Homeostasis

Anil Somayaji’s Process Homeostasis [58], styled as pH, forms the basis for ebpH’s core de-
sign; as such, it is worth exploring the original implementation, design choices, and rationale
therein. Using the same IDS categories from the previous section, we can classify pH as
a host-based anomaly detection system that responds by both issuing alerts and mounting
countermeasures to reduce the impact of anomalies; in particular pH responds to anoma-
lies by injecting delays into a process’ system calls proportionally to the number of recent
anomalies that have been observed [58]. It is in this way that pH lives up to its name: these
delays make process behavior homeostatic.

2.6.1 Anomaly Detection Through Lookahead Pairs

pH uses a technique known as lookahead pairs [58, 59] for detecting anomalies in system call
data. This is in stark contrast to other anomaly detection systems at the time that primarily
relied on full sequence analysis. Here we describe lookahead pairs, their use for anomaly
detection, and offer a comparison with the more widely-known full sequence analysis.

In order to identify normal process behavior, profiles are constructed for each executable on
the system. On calls to execve, pH associates the correct profile with a process and begins
monitoring its system calls, modifying the lookahead pairs associated with the testing data
of a profile. Once enough normal samples have been gathered and the profile has reached a
specified maturity date, the process is then placed into training mode wherein sequences of
system calls are compared with the existing lookahead pairs for a given profile.

Somayaji and Inoue [59] contrasted full sequence analysis with lookahead pairs and found
that lookahead pairs produce fewer false positives than full sequences and maintain this
property even with very long window lengths. This comes at the expense of potentially
reduced sensitivity to some attacks as well as more vulnerable to mimicry attacks. However,
as part of their work, Somayaji and Inoue showed that longer sequences can help mitigate
these shortcomings in practice [59].

Both pH and ebpH use lookahead pair window sizes of 9, which has been shown to be effective
at both minimizing false positive rates and mitigating potential mimicry attacks [58]. This
window size also carries the advantage that lookahead pairs can be expressed with exactly 8
bits of information (one bit for every previous position i ∈ {1..9}).
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2.6.2 Homeostasis Through System Call Delays

Perhaps the most unique aspect of pH’s approach is the means by which it achieves the
eponymous concept of process homeostasis : system call delays. Inspired by the biological
process of the same name, pH attempts to maintain homeostatic process behavior by injecting
delays into system calls that are detected as being anomalous [58].

By scaling this response in proportion to the number of recent anomalies detected in a
profile, pH is able to effectively mitigate attacks while minimizing the impact of occasional
false positives. For example, a process that triggers several dozen anomalies will be slowed
down to the point of effectively stopping, while a process that triggers only one or two
might only be delayed by a few seconds. Admittedly, this relies upon the assumption of low
burstiness for false positives. While this assumption generally holds, Somayaji acknowledges
in his dissertation [58] that the possibility of attackers purposely provoking pH into causing
denial of service attacks is a potential problem. Additionally, users may become frustrated
with pH’s refusal to allow otherwise legitimate behavior simply due to the fact that it has
not yet been observed.

In its current incarnation, ebpH does not yet delay system calls like its predecessor. The
primary reason for this gap in functionality is that a solution still needs to be developed that
works well with the eBPF paradigm; in particular, injecting delays via eBPF tracepoints or
probes seems untenable due to the verifier’s refusal to accommodate the code required for
such an implementation. The addition of system call delays into ebpH is currently a topic
for future work (c.f. Section 5.2.2).

3 Implementing ebpH

At a high level, ebpH is an anomaly detection system that profiles executable behavior by
sequencing the system calls that processes make to the kernel; this essentially serves as a
reimplementation of the original pH system by Somayaji [58]. What makes ebpH unique is
its use of BPF programs for system call instrumentation and profiling (in contrast to the
original pH which was implemented as a Linux 2.2 kernel patch). In this section, I will
present the design and implementation of ebpH, with a particular emphasis on the both
challenges and benefits associated with an eBPF implementation and ebpH’s parallels with
the original pH system.
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3.1 Why an eBPF Implementation?

In light of the various approaches presented in Section 2, it is worth comparing the approach
taken by the original pH [58] system with the new ebpH prototype. In doing so, I will
attempt to justify why an eBPF implementation of a system like pH makes sense, and why
such an implementation carries key advantages that would not otherwise be tenable through
traditional kernel-based implementations. To begin with, let us compare the rough features
of pH with ebpH; Table 3.1 provides a rough framework for doing so.

Table 3.1: Comparing the current prototype of ebpH with the original pH system.
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ebpH eBPF + Userspace Daemon 3 3 7 3 3 7

As discussed in previous sections (see Section 2.3 and Section 2.5.1), eBPF offers several
unique advantages over traditional solutions, particularly with respect to intrusion detection
data collection. eBPF can match the scope [25, 29] and speed [20] of kernel-based imple-
mentations while providing safety guarantees that previously would not have been possible.
Whereas before there existed an implicit trade-off between production safety on one hand
and scope and efficiency on the other, now eBPF marries these three properties under one
paradigm. Furthermore, eBPF’s forward-compatibility ensures that new versions of the ker-
nel will not break old code, and that in general it is not necessary to upgrade to a new kernel
version once one has access to the minimum set of features required to compile and run a
given BPF program. For instance, since ebpH depends on Linux 5.3, all Linux kernel versions
≥ 5.3 will be able to support ebpH’s current set of features. This ensures perfect forward
compatibility with production systems and minimizes the impact of integrating ebpH into a
production security stack.

The primary disadvantage of using eBPF is that BPF programs are necessarily more limited
in scope than kernel modules. That is not to say that BPF programs cannot be complex, but
rather that constructs that work well in kernel implementations often need to be reworked
for use in eBPF. A good example of this is the inability for ebpH to issue system call delays
in the same manner as the original pH. This is something that remains a topic for future
work, but there are alternative ways that it can be done, for example the method using
bpf_signal described in Section 5.2.2.
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Since eBPF disallows global variables in the traditional sense, data storage and communica-
tion between BPF programs needs to occur through the variety of maps. Further, limitations
on memory allocation and access restrict the dynamic allocation of data. To cope with these
restrictions, the current version of ebpH takes a less memory-efficient approach than its
predecessor; in particular, the sparse array of lookahead pairs is not dynamically allocated
– instead, profiles themselves are dynamically allocated at runtime via a special hashmap.
There are plans to rework the way ebpH stores profile data to move it into separate map-
in-map structures that should allow a more memory-efficient approach to lookahead pair
storage. This is outlined in more detail in Section 5.2.4.

In summary, despite a few shortcomings of an eBPF implementation compared to a kernel
implementation, the benefits of portability and production safety in general outweigh these
detractors. Additionally, the problems with the current ebpH implementation are solvable
in eBPF, and future versions of the system should be significantly more memory efficient
and offer the capability to respond to attacks in real time, just as in the original pH [58].

3.2 Architectural Overview

ebpH can be thought of as a combination of several distinct components, functioning in
both userspace and kernelspace. In particular it includes a daemon and several CLI pro-
grams (described in Section 3.3) in userspace as well as several BPF programs in kernelspace
(described in Section 3.4 and onwards). The architecture of ebpH is depicted in Figure 3.1.

ebpH’s CLI programs interact with the daemon through a UNIX stream socket which con-
nects to the daemon’s API. The daemon manages the BPF programs and interacts with them
through a combination of direct map access, perf event buffers, and library calls, which are
instrumented by uprobes in kernelspace. This combination of techniques allows the daemon
to lookup and modify data, poll for events, and issue complex commands to ebpH’s BPF
programs. The BPF programs themselves are used to instrument system calls along with a
few other aspects of the system such as signals and scheduler events. Subsequent sections
will cover these aspects of ebpH’s design in further detail.
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Figure 3.1: The architecture of ebpH. Note how the interaction between userspace
programs and BPF programs is centered around the ebpH daemon. ebph-admin and
ebph-ps are used to issue commands to and query info from the daemon, which interacts
with the BPF programs on their behalf. The BPF programs instrument various kernel
functions which are triggered by system calls from userspace.

3.3 Userspace Components

The userspace components of ebpH are comprised of several distinct and related programs. In
particular, these programs can be divided into two sets: the ebpH daemon (ebphd) and several
CLI (command line interface) programs used to interact with it. The daemon is responsible
for submitting BPF programs to the kernel, managing their state, and providing an API
to other userspace programs. The CLI programs used to interact with the daemon include
ebph-ps, used to list actively traced processes, threads, and profiles, providing information
about each, and ebph-admin, used to issue commands to the daemon and to check the status
of the BPF program. In order to issue more complex commands to the BPF program,
ebphd leverages a userspace shared library, libebph.so which provides functions that can be
connected to arbitrary BPF programs via uprobes. Earlier versions of ebpH also included a
GUI, however the GUI needs to be refactored in order to work with ebpH’s new architecture
and this is currently a topic for future work.
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3.3.1 The ebpH Daemon

The ebpH Daemon is implemented as a Python3 script that runs as a daemonized background
process. When started, the daemon uses bcc’s Python front end [29] to generate the BPF
bytecode responsible for tracing system calls, building profiles, and detecting anomalous
behavior. It then submits this bytecode to the verifier and JIT compiler for insertion into
the eBPF virtual machine.

Once the eBPF program is running in the kernel, the daemon continuously polls a set of
specialized BPF maps called perf buffers which are updated on the occurrence of specific
events. Table 3.2 presents an overview of the most important events that ebpH cares about.
As events are consumed, they are handled by the daemon and removed from the buffer
to make room for new events. These buffers offer a lightweight and efficient method to
transfer data from the eBPF program to userspace, particularly since buffering data in this
way significantly reduces the number of required context switches between kernelspace and
userspace.

In addition to perf buffers, the daemon is also able to communicate with the eBPF program
through direct access to its maps. We use this direct access to issue commands to the eBPF
program, check program state, and gather several statistics, such as profile count, anomaly
count, and system call count. At the core of ebpH’s design philosophy is the combination
of system visibility and security, and so providing as much information as possible about
system state is of paramount importance.

The daemon also uses direct map access to save and load profiles to and from the disk.
Profiles are saved automatically at regular intervals, configurable by the user, as well as any
time ebpH stops monitoring the system. These profiles are automatically loaded every time
ebpH starts.

Table 3.2: Main perf event categories in ebpH.

Event Description Memory Overhead9

ebpH_on_executable_processed Reports when a profile has been created 28 pages

ebpH_on_anomaly Reports anomalies in specific processes
and which profile they were associated
with

28 pages

ebpH_on_anomaly_limit Reports when a profile hits its anomaly
limit

28 pages
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ebpH_on_tolerize_limit Reports when a process hits its tolerize
limit

28 pages

ebpH_on_start_normal Reports when a profile starts normal
monitoring

28 pages

ebpH_on_new_sequence Reports new sequences for logging
(when enabled)

28 pages

ebpH_warning Reports generic warnings 22 pages

ebpH_error Reports generic errors 22 pages

In order to facilitate communication with the daemon, ebphd exposes a UNIX domain stream
socket at /var/run/ebph.sock. This socket is owned by the superuser, root, and has permis-
sions 600 in order to prevent unauthorized processes from attempting to issue commands
to the daemon. The CLI applications, ebph-ps (c.f. Section 3.3.2) and ebph-admin (c.f.
Section 3.3.3), use this socket to send commands to and receive replies from the daemon.

3.3.2 ebph-ps

ebph-ps is the most common tool that a system administrator will use to get a quick overview
of process state on their system with respect to ebpH profiles. When run with its default
settings, ebph-ps lists all currently monitored processes on the system with their PID, comm,
current status (e.g. training, frozen, or normal), total system call count, system calls since
last modification, anomaly count, and normal time. When the user invokes ebph-ps, it sends
a JSON-encoded request to the daemon via the ebphd’s UNIX domain stream socket. The
daemon replies on that same socket with a JSON-encoded list of processes or profiles. Users
who are acquainted with the popular ps command line utility will find ebph-ps’s interface
quite familiar. Listing 3.1 shows sample output from ebph-ps running on a system.

Listing 3.1: Sample output from ebph-ps.
PID COMM STATUS COUNT LAST_MOD ANOMALIES NORMAL TIME

727 lightdm Training 58177 1543 0 2020 -02 -23 16:13:54

739 Xorg Training 80663410 1115643 0 2020 -02 -23 16:13:53

742 accounts -daemon Training 172644 22043 0 2020 -02 -26 20:18:40

747 polkitd Training 461714 4454 0 2020 -03 -03 15:00:18

799 lightdm Training 58177 1543 0 2020 -02 -23 16:13:54

817 systemd Training 93688 8133 0 2020 -03 -03 15:00:19

824 i3 Training 5043705 59416 0 2020 -03 -03 15:21:55

9The majority of these values are subject to significant optimization in future iterations of ebpH. The
28 value is a sensible default chosen by bcc. In practice, many of these events are infrequent enough that
smaller buffer sizes would be sufficient.
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831 dbus -daemon Training 61979 3620 0 2020 -02 -23 16:13:54

835 redshift Training 366557 136577 0 2020 -02 -26 20:18:57

864 polybar Training 16085886 14860 0 2020 -02 -26 20:48:56

866 xbindkeys Training 12890 1227 0 2020 -02 -23 16:13:59

868 volnoti Training 21305 3329 0 2020 -02 -23 16:13:59

872 pulseaudio Training 16869390 1292 0 2020 -02 -23 16:13:59

873 rtkit -daemon Training 104315 23351 0 2020 -02 -26 20:18:58

878 gsettings -hel... Training 9924 124 0 2020 -02 -23 16:14:00

885 alacritty Training 47085184 10249 0 2020 -03 -03 15:21:55

908 zsh Training 21847582 194246 0 2020 -03 -03 15:21:56

917 python3 .8 Training 28569801 4254 0 2020 -02 -21 15:01:42

1071 sudo Training 3640 2407 0 2020 -04 -01 10:09:15

1072 python3 .8 Training 28569801 4254 0 2020 -02 -21 15:01:42

In addition to listing information per-process, ebph-ps can also show information per-thread
using an optional -t flag. This can be used to get an idea of the number of tasks that ebpH is
actually monitoring (since ebpH’s view of a “process” is actually an individual thread rather
than the entire thread group). Further, the -p flag can be specified to list all profiles on the
system instead of processes. This can be used to find duplicate profiles for pruning, find the
key associated with a given profile, or get an idea of the overall behavior of all binaries on
the system. Listing 3.2 shows a truncated example of listing all profiles on a system using
the -p flag.

Listing 3.2: Sample output from ebph-ps -p. Note how the PID column has been
replaced with the profile KEY and ebph-ps now lists each profile exactly once, regardless
of whether the profile is currently running.
KEY COMM STATUS TRAIN_COUNT LAST_MOD ANOMALIES NORMAL TIME

5259631 systemd -sleep Normal 19039 0 0 2020 -03 -03 17:50:58

5259625 systemd -sleep Training 1274 422 32 2020 -03 -08 17:51:52

5259628 systemd -sysctl Training 554 74 0 2020 -02 -25 18:41:25

5259377 systemd -tmpfi ... Training 29199 5014 0 2020 -02 -26 20:34:00

5259378 systemd -tty -a... Normal 17348 17348 0 2020 -03 -03 15:44:19

5259635 systemd -user -... Training 5786 1529 0 2020 -02 -23 16:13:54

5259642 systemd -user -... Normal 1452 1452 0 2020 -03 -15 09:29:04

5259636 systemd -user -... Training 1630 405 0 2020 -02 -26 20:18:40

5259643 systemd -user -... Normal 409 409 0 2020 -03 -15 09:29:39

5255864 tail Training 137946 1326 0 2020 -03 -03 19:14:51

5264292 tbl Training 3200 2081 0 2020 -02 -21 15:50:44

5255865 tee Training 1616 323 0 2020 -02 -28 22:16:31

5255866 test Normal 75 75 0 2020 -03 -09 17:25:21

5380461 thunderbird Training 1906232 1 0 2020 -02 -26 21:07:36

5275208 thunderbird Training 427 237 0 2020 -02 -26 21:07:35

5275250 tmux Training 1334866 36988 0 2020 -02 -23 16:02:25

5255868 touch Training 1749 837 0 2020 -03 -03 16:54:23

5247138 tput Training 300534 147106 32 2020 -02 -21 15:03:37
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3.3.3 ebph-admin

ebph-admin is responsible for issuing more complex commands to ebpH, as well as making
generic queries about ebpH’s status. Status queries include information about whether ebpH
is currently monitoring, how many system calls it has observed, how many process and
threads are currently being monitored, and how many profiles are loaded in memory.

Complex commands are issued via libebph.so, a dynamic library written in C whose job it is
to expose functions that are then attached to the BPF program via uprobes. These uprobes
are restricted to only trace calls that originate from the daemon’s own PID, which prevents
another binary from simply loading that library code and issuing unauthorized commands
to the BPF program. Figure 3.2 depicts the process of using ebph-admin to make a request
to the daemon.

Figure 3.2: Dataflow of a request from ebph-admin. The program issues requests
to the daemon, which then either directly accesses a map or triggers the execution of
a uprobe BPF program with libebph.so, depending on the complexity of the request.
Note that malicious applications cannot abuse libebph.so to issue their own commands
– only the daemon can do this.

3.3.4 ebpH Logs

The current iteration of ebpH uses log data to communicate events to the user. The daemon
logs all important events to log files located at /var/log/ebpH by default, including detected
anomalies with corresponding sequences, profile creation, and process normalization. Event
logging categories roughly correspond to the perf event buffers depicted in Table 3.2 on page
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26, since the daemon writes a log message whenever one of these events is observed.

Since the current version of ebpH does not include a GUI (although there are plans to
reintroduce a GUI in the future), logs must be frequently checked to keep track of system
behavior and any detected anomalies. As a temporary stopgap, scripts can watch the logfile
on behalf of the user and send more conspicuous notifications to the user. A few such scripts
are included with ebpH; for instance, watch-anom.sh watches for anomaly events in the logfile
with tail and sends a push notification to the user via the notify-send command.

Using a combination of scripts and manual log analysis, the user can gain a clear picture
of how their system is behaving and whether any anomalies have occurred in said behavior.
When the ebpH GUI is reintroduced in future iterations, it will be much easier to observe
system behavior in detail. Refer to Section 5.2.5 for a description of future work with respect
to ebpH’s GUI.

3.4 ebpH Profiles

In order to monitor process behavior, ebpH keeps track of a unique profile (Listing 3.3) for
each executable on the system. It does this by maintaining a hashmap of profiles, hashed
by a unique per-executable ID; this ID is a 64-bit unsigned integer which is calculated as a
unique combination of filesystem device number and inode number:

key = (device number << 32) + inode number

where << is the left bitshift operation. In other words, ebpH takes the filesystem’s device
ID in the upper 32 bits of our key, and the inode number in the lower 32 bits. This method
provides a simple and efficient way to uniquely map keys to profiles.

Listing 3.3: A simplified definition of the ebpH profile struct.

1 struct ebpH_profile_data
2 {
3 u8 flags[SYSCALLS ][ SYSCALLS ]; /* System call lookahead pairs */
4 u64 last_mod_count; /* Syscalls since profile was last modified */
5 u64 train_count; /* Syscalls seen during training */
6 };
7
8 struct ebpH_profile
9 {

10 struct ebpH_profile_data train; /* Training data */
11 struct ebpH_profile_data test; /* Testing data */
12 u8 frozen; /* Is the profile frozen? */
13 u8 normal; /* Is the profile normal? */
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14 u64 normal_time; /* Minimum system time required for normalcy */
15 u64 anomalies; /* Number of anomalies in the profile */
16 char comm [128]; /* Name of the executable file */
17 };

The profile itself is a C data structure that keeps track of information about the executable
as well as two copies of profile data, one for training, and one for testing. This profile data
consists of a sparse two dimensional array of lookahead pairs [58, 59] used to keep track of
observed system call patterns. Each entry in this array consists of an 8-bit integer, with
the ith bit corresponding to a previously observed distance i between the two calls. When
ebpH observes this distance, it sets the corresponding bit to 1 using a bitwise OR operation.
Otherwise, it remains 0. Each profile maintains lookahead pairs for each possible pair of
system calls, and these lookahead pairs are checked against new sequences when a profile
becomes normal. Figure 3.3 presents a sample (read, close) lookahead pair for the ls binary.

Figure 3.3: A sample (read, close) lookahead pair in the ebpH profile for ls. (a)
shows the lookahead pair and (b) shows two relevant system call sequences, separated
by several omitted calls. Note that the first three system calls in both the first and
second sequence are responsible for the two least significant bits of the lookahead pair.

Each process (c.f. Section 3.5) is associated with exactly one profile at a time. Profile
association is updated whenever ebpH observes a process making a call to execve. Whenever
a process makes a system call, ebpH looks up its associated profile, and sets the appropriate
lookahead pairs according to the process’ most recent system calls. This forms the crux of
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how ebpH is able to monitor process behavior.

Just like in the original pH [58], profile state is tracked using the frozen and normal fields.
When a profile’s behavior has stabilized, it is marked frozen. If a profile has been frozen
for one week (i.e. system time has reached normal_time), the profile is then marked normal.
Profiles are unfrozen when new behavior is observed and anomalies are only flagged in normal
profiles.

3.4.1 Writing Profiles to Disk and Reading Profiles from Disk

In order to allow profile data to persist across machine reboots, ebpH periodically writes
profile data to disk, at an interval configurable the user, as well as when the BPF program
is unloaded by the user. Profiles are read from disk when ebpH first loads.

In the original pH, profile data was saved and loaded in kernelspace [58] which meant that it
required kernelspace file I/O, which is often regarded as an unsafe practice. ebpH solves this
problem by moving all file I/O operations into userspace. This is made possible due to the
bidirectional nature of dataflow with respect to eBPF maps. Specifically, when writing to
disk, the daemon queries profile data from each entry in the profile map and writes that data
to a file (/var/lib/ebpH/<profile_key>). When reading from disk, the daemon reads profile
data from the appropriate files (/var/lib/ebpH/<profile_key>) and associates that data with
keys in the newly created profile map.

3.5 Tracing Processes

Like profiles, process information is also tracked through a global hashmap of process structs.
The process struct’s primary purpose is to maintain the association between a process and
its profile, maintain a sequence of system calls, and keep track of various metadata. See
Listing 3.4 for a simplified definition of the ebpH process struct.

Listing 3.4: A simplified definition of the ebpH process struct.

1 struct ebpH_sequence
2 {
3 long seq [9]; /* Remember 9 most recent system calls in order */
4 u8 count; /* How many system calls are in our sequence? */
5 };
6
7 struct ebpH_sequence_stack
8 {
9 ebpH_sequence [3]; /* Keep track of up to 3 sequences at a time */

10 int top; /* Top of the sequence stack , values from 0-2 */
11 int should_pop; /* Pop from the stack on next system call */
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12 };
13
14 struct ebpH_process
15 {
16 struct ebpH_sequence_stack;
17 u32 pid; /* Kernel tgid */
18 u32 tid; /* Kernel pid */
19 u64 profile_key; /* Associated profile key */
20 u8 in_execve; /* Are we in the middle of an execve? */
21 };

ebpH monitors process behavior by instrumenting tracepoints all system calls. On every
system call return, ebpH adds the corresponding system call number to the process’ current
sequence (ebpH actually maintains a stack of sequences in order to handle non-deterministic
behavior; this will be covered in more detail shortly). This sequence is subsequently used
to index into the corresponding profile’s lookahead pairs and flip the correct bits. If the
process’ profile is normal, new sequences will trigger ebpH’s anomaly detection mechanism
and a warning will be sent to userspace.

In addition to the system call tracepoints described above, ebpH also instruments a few
other tracepoints to keep track of profile creation, process creation and deletion, and profile
association on exec-family system calls. The sched class of tracepoints exposes hooks on the
necessary system functionality in order to do this. Additionally, ebpH defines one kprobe
in order to detect when a process invokes its signal handler. Table 3.3 summarizes the
tracepoints and kprobes used by ebpH along with their side effects on ebpH’s state.

3.5.1 Profile Creation and Association

There are several important considerations here. First, ebpH needs a way to assign profiles
to processes, which is done by instrumenting the result of an execve(2) system call using the
sched_process_exec tracepoint. This tracepoint allows us to access information provide by
the linux_bin_prm struct, which is used to store information about the executable or inter-
preted script that execve(2) has loaded. In particular, the executables inode and filesystem
device number are used in combination to compute a key that uniquely maps to an individ-
ual executable on disk. Without this, ebpH would be unable to differentiate between two
paths that resolve to a binary with the same name, for example /usr/bin/ls and ./ls; this is
due to an unfortunate nuance in execve(2)’s treatment of pathnames (i.e. it only considers
relative paths when provided in order to save on memory).

In addition to associating a process with the correct profile, ebpH also wipes the process’
current sequence of system calls, to ensure that there is no carryover between two unrelated
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Table 3.3: eBPF tracepoints and kprobes used in ebpH.

Tracepoint/Kprobe Description ebpH Side Effect

sys_enter Tracepoint invoked just after system
call entry

Check for return from a signal han-
dler and pop from sequence stack if
necessary

sys_exit Tracepoint invoked just before sys-
tem call return

Operate on per-process system call
sequences and per-profile lookahead
pairs

sched_process_fork Tracepoint invoked just after a call
to fork(2), vfork(2), or clone(2)

Create a new process struct and add
it to the hashmap

sched_process_exec Tracepoint invoked just after an
exec-family system call

Create a profile if necessary, adding
it to the hashmap, and associate it
with a process

sched_process_exit Tracepoint invoked just after a
thread exits

Delete a process struct from the
hashmap

get_signal Kretprobe invoked when a process’
signal handler is about to be called

Push a new frame onto the process’
sequence stack

profiles when constructing their lookahead pairs. This is important in order to prevent execve
(2) calls from being used to construct artificially good sequences in a profile which may be
later used to mask malicious behavior [58].

3.5.2 Profile Association and Sequence Duplication

Another special consideration is with respect to fork(2) and clone(2) family system calls. A
forked process should begin with the same state as its parent and should (at least initially)
be associated with the same profile as its parent. A subsequent execve(2) (i.e. the fork-
execve pattern) would then overwrite this association. In order to accomplish this, ebpH
instruments tracepoints for the fork(2), vfork(2), and clone(2) system calls, ensuring that
it associates the child process with the parent’s profile, if such a profile exists. If ebpH
detects an execve(2) as outlined above, it will simply overwrite the initial profile association
provided by the fork. The parent’s current system call sequence is also copied to the child
to prevent forks from being used to break sequences.

3.5.3 Dealing with Signal Handlers and Non-Determinism

As an anomaly-based intrusion detection system, it is critical that ebpH be able to establish
normal profiles of program behavior in a timely manner. As presented in previous sections,
establishing the normalcy of a profile requires that the it has been active for at least a week
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and that the ratio of total system calls seen during training to system calls the last time
the profile was modified be sufficiently large. As a corollary, every time a process makes a
system call that results in a previously unobserved sequence, this ratio becomes increasingly
difficult to achieve. In practice, this means that it is much harder to normalize profiles that
exhibit less deterministic behavior. As a practical example, consider the time required to
stabilize a relatively simple binary, such as ls versus a complex web browser like firefox;
not only does firefox make significantly more system calls during an average run, but it is
also far more likely to produce a previously unseen sequence at any given time.

This problem of normalizing profiles is compounded by the non-deterministic behavior in-
troduced by signals and signal handlers. This phenomenon was first noted by Amai et al. [1]
in a 2005 technical paper on the original pH system. In particular, they noted that signal
handlers were a significant source of non-deterministic behavior in processes that ultimately
led to significantly longer wait times until profile normalcy. This effect is not difficult to
see in practice, especially in the context of complex programs that run for extended peri-
ods of time, such as the above firefox example. Suppose that we have some sequence of
system calls (A,B,C,D,E) and a signal handler that invokes system calls (F,G,H); de-
pending on when this signal is caught during the initial sequence, the resulting sequence
can vary significantly. For example, we might see (A,F,G,H,B,C,D,E) in one instance
and (A,B,C,D, F,G,H,E) in another. This results in a significant deterioration in profile
stability, and subsequently in profile normalcy times.

ebpH deals with the problem of signal handlers in the same manner proposed by Amai et
al. [1]. Specifically, it maintains a stack of system call sequences in each process struct; each
time a traced process receives a signal, ebpH pushes a frame onto this stack, and when the
process exits from its signal handler, ebpH pops the frame. This has the effect of temporarily
wiping ebpH’s memory of a process’ current system call sequence whenever it enters a signal
handler, allowing subsequent lookahead pairs to be unaffected by the execution context prior
to the handler’s invocation and vice versa. In order to decide when to push, ebpH instruments
a kprobe on the kernel’s get_signal implementation; this allows it to detect when a process
receives a signal that will be handled. Subsequently, ebpH detects a return from a signal
handler by checking for the rt_sigreturn system call; when ebpH detects such a return, it
pops the top frame from the sequence stack.

3.5.4 Reaping Processes

ebpH reaps tasks from its process map whenever detects that they have exited. By reaping
process structs from our map as ebpH is finished with them, it is able to ensure that the map
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neither fills up, nor does it consume more memory than necessary. In order to detect when
a task exits, ebpH instruments the sched_process_exit tracepoint provided by the kernel’s
trace API. This tracepoint is triggered whenever the scheduler handles the termination of a
task. Within the BPF program associated with the tracepoint, ebpH simply determines the
task’s PID and deletes that key from the process map.

3.6 Training, Testing, and Anomaly Detection

ebpH profiles are tracked in two phases, training mode and testing mode. Profile data is
considered training data until the profile becomes normal (as described in Section 3.4).
Once a profile is in testing mode, the lookahead pairs generated by its associated processes
are compared with existing data. When mismatches occur, they are flagged as anomalies
which are reported to userspace via a perf event buffer. The detection of an anomaly also
prompts ebpH to remove the profile’s normal flag and return it to training mode.

3.6.1 A Simple Example of ebpH Anomaly Detection

As an example, consider the simple program shown in Listing 3.5. This program’s normal
behavior is to simply print a message to the terminal. However, when issued an extra
argument (in practice, this could be a secret keyword for activating a backdoor), it prints
one extra message. This will cause a noticeable change in the lookahead pairs associated
with the program’s profile, and this will be flagged by ebpH if the profile has been previously
marked normal.

Listing 3.5: anomaly.c, a simple program to demonstrate anomaly detection in ebpH.

1 /* anomaly.c */
2
3 #include <stdio.h>
4 #include <unistd.h>
5
6 int main(int argc , char **argv)
7 {
8 /* Execute this fake anomaly
9 * when we provide an argument */

10 if (argc > 1)
11 printf("Oops!\n");
12 /* Say hello */
13 printf("Hello world!\n");
14
15 return 0;
16 }

In order to test this, I artificially lower ebpH’s normal time to three seconds instead of one
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week. Then, I run the above test program several times with no arguments to establish nor-
mal behavior. Once the profile has been marked as normal, I then run the same test program
with an argument to produce the anomaly. ebpH immediately detects the anomalous system
calls and flags them. These anomalies are then reported to userspace via a perf buffer as
shown in Listing 3.6.

Listing 3.6: The flagged anomaly in the anomaly binary as shown in the ebpH logs.
Note that ebpH also logs the offending sequence, reordering it so that most recent system
calls appear on the right.

WARNING: Anomalies in PID 11162 (anomaly 38803844):
MPROTECT , MPROTECT , MPROTECT , MUNMAP , FSTAT , BRK , BRK , WRITE , WRITE

From here, one can figure out exactly what went wrong by inspecting the system call se-
quences produced by the anomaly program, in both cases and comparing them with their
respective lookahead pair patterns. Figure 3.4 provides an example of this comparison.

While this contrived example is useful for demonstrating ebpH’s anomaly detection, process
behavior in practice is often more nuanced. ebpH collects at least a week’s worth of data
about a process’ system calls before marking it normal, which often corresponds with several
branches of execution. In a real example, the multiple consecutive write calls might be a
perfectly normal execution path for this process; by ensuring that ebpH takes its time before
deciding whether a process’ profile has reached acceptable maturity for testing, it decreases
the probability of any false positives.

3.7 Soothing the Verifier

The development of ebpH elicited many challenges with respect to the eBPF verifier. As
seen in Section 2.3.3, eBPF programs become more difficult to verify as they increase in
complexity; as a corollary, when developing large and complex eBPF programs, a great deal
of care and attention must be paid to ensure that the verifier will not reject the code.

The problem of dealing with the eBPF verifier can be expressed in the form of several
subproblems as follows:

1) Many kernel functions and programming constructs are prohibited in eBPF;
2) eBPF programs come with a hard stack space limit of 512 bytes;
3) Traditional C-style dynamic memory allocation is prohibited;
4) Support for bounded loops is in its infancy and such loops must be carefully constructed

to avoid verifier issues;
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Figure 3.4: Two sample (write, write) lookahead pairs in the ebpH profile for
anomaly.c. (a) shows the lookahead pair and (b) shows two relevant system call se-
quences. The left hand side depicts normal program behavior, while the right hand side
depicts our artificially generated anomaly. There are several other anomalous looka-
head pairs which result from this extra write call, but we focus on (write, write) for
simplicity.
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5) The verifier tends to err on the side of caution and will produce false positives with
non-negligible frequency.

Subproblem (1) poses a particular challenge for a few aspects of ebpH’s design: namely,
profile keying and storage, execve(2) abortion, and issuing system call delays. This is due to
the fact that eBPF programs do not have access to many of the helper functions available for
traditional kernel development. As such, profile keying and storage have been fundamentally
changed in ebpH compared to its predecessor, and execve(2) abortion and system call delays
have been left as topics for future work (see Section 5.2.2). The original pH [58] stored
profiles as a linked list and indexed them using executable pathnames. Unfortunately, the
kernel helper required to build pathnames from a dentry is not available in eBPF and,
while a partial solution has been submitted for review in the kernel upstream [78], this will
likely not be merged into the mainline until a much later version of Linux. As befits the BPF
paradigm, ebpH stores its profiles in a global hashmap instead of a linked list and indexes this
hashmap by a uniquely computed integer based on executable metadata, namely its inode
and filesystem device number. Profiles are then augmented with the executables filename10

for usability purposes.

From subproblems (2) and (3), one immediate issue arises: with no means of explicit dynamic
memory allocation and a stack space limit of 512 bytes, ebpH needs an alternative method
of instantiating the relatively large data structures described in Section 3.4 and Section 3.5,
as both the ebpH_profile and ebpH_process structs are larger than would be allowed in
the eBPF stack. Fortunately, a creative solution exists this problem which leverages the
BPF_ARRAY’s unique property of zero-initializing elements on creation. What this means is
that ebpH can maintain a size 1 array for each data structure it requires; when it needs
to instantiate a struct, all it needs to do is look up this value from the array, and copy it
into the corresponding global hashmap. Fortunately, we can creatively solve this problem by
using a BPF_ARRAY for initialization. This technique constitutes the design pattern outlined
in Listing A.1 of Appendix A.

In order to prevent ebpH’s maps from consuming all of the system’s memory, they are flagged
with BPF_F_NO_PREALLOC which notifies the kernel that these maps should be dynamically
allocated at runtime as opposed to statically allocated at load time. While this lessens the
burden on the system, it is not an ideal solution. There are known issues with dynamically
allocated maps [65] which may cause deadlocks when used in certain high-volume tracing
events such as kernel spinlock counters. For ebpH’s prototype, this trade-off in reliability is
acceptable, but future versions will be refactored to make use of a combination of LRU_HASH

10This is not the same thing as a pathname.
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for low memory overhead and HASH_OF_MAPS for lookahead pair storage. This will provide
a more reliable and more memory efficient approach than the current dynamic hashmap
allocation. Section 5.2.4 discusses this future refactor in more detail.

From subproblem (4), the obvious issue arises that loops need to be “simple” enough for the
eBPF verifier to reason about them. For example, loops that have entrypoints in the middle
of iteration will potentially be flagged if the verifier is unable to correctly identify the loop
structure [11]. Since the verifier relies on pattern matching in order to identify induction
variables, LLVM optimizations to eBPF bytecode introduce an element of fragility to loop
verification [11]. Bounded loops that perform memory access using the induction variable
are also quite finicky at best; the verifier must be able to show that memory access is safe in
all possible states – this precludes induction variables from having an unsafe lower or upper
bound when they are used to index into a buffer. These limitations affect ebpH and its design
in non-trivial ways; for example, ebpH requires specially crafted helper functions to perform
simple operations such as indexing into the array of lookahead pairs or per-process system
call sequences. These helpers perform extra checks on the bounds of the variable being
used to index into the array and are designed to handle failure gracefully. Additionally,
special compiler macros are employed to ensure that LLVM optimizations do not affect their
integrity.

Subproblem (5) is perhaps the most difficult to reckon with, but is quite understandable when
considering the gravity and difficulty of the problem that the verifier is trying to solve. As
shown in Section 2.3.3, guaranteeing the safety of arbitrary untrusted programs is a difficult
problem and concessions need to be made in order for such guarantees to be tenable. False
positives are unfortunately one of those concessions. When the verifier rejects code due to
a false positive, there is simply no better solution than to try a different approach. ebpH
triggered many false positives during its development which required significant refactoring
of otherwise reasonable code. While these verifier false positives are unfortunate, they are
a far cry from the vexing kernel panics, data corruptions, and other crashes that so often
occur during ordinary kernel development – ebpH crashed the system precisely zero times
during testing and development. This extraordinary feat is made possible by eBPF’s safety
guarantees.

3.8 Dealing a Lack of Concurrency Control Mechanisms

Due to a lack of sufficient preemption checks in the verifier [38, 39], tracing programs are
currently forbidden from using the bpf_spin_lock primitive included in kernel 5.1. This
means that ebpH has no means of managing concurrency within its data structures in the
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traditional sense, and there no immediately obvious way of guaranteeing that modifications
to profiles are consistent. Notably, the map used to keep track of processes does not suffer
from this problem, as each ebpH_process data structure keeps track of its own thread.

Since profiles may be modified by multiple processes at once, it is important that these
modifications be kept relatively synchronized to avoid mismatches. One useful aspect of
ebpH’s design is that entries within lookahead pairs are tracked with bits, which means
that each entry is either 1 or 0 at a given time, and that entries are set using a bitwise OR

operation. Since a x | 1 is always equal to 1, the operation of setting a lookahead pair is
actually immune to concurrency-related issues. Similarly, lookahead pairs are only checked
for anomalies once a profile has been frozen, and this check is done on a separate copy of
the training data from the one being modified. This means that the operation of checking a
lookahead pair is also safe.

On the other hand, ebpH profiles have several flags and counters that need to be kept
synchronized in order for them to work properly. Although locking in the traditional sense
is impossible, eBPF does have atomic add and subtract instructions [38] that combine the
operation of checking a value with the operation of incrementing or decrementing it. ebpH
uses these to keep its flags and counters at least semi-consistent with what is expected.
Although this is not a perfect solution, it is sufficient as a temporary stopgap until a better
alternative is made available. Section 5.1.1 further discusses the need for concurrency control
mechanisms in eBPF.

4 Measuring ebpH’s Overhead

One of the primary advantages of eBPF is its relatively low overhead [25, 63, 64] compared
to many other system introspection solutions (c.f. Section 2.1 and Section 2.3). In order to
justify this claim in the context of an eBPF intrusion detection system, it is necessary to
ascertain the overhead associated with running ebpH on a variety of systems under a variety
of workloads (artificial and otherwise). Here I describe the tests that were conducted in
order to determine this overhead. Section 4.1 outlines the systems and tools used for testing
and provides an overview of the collected datasets. The specifics of each benchmarking test
along with the results are provided in Section 4.2.

4.1 Methodology

The experimental methodology used to determine ebpH’s performance overhead includes
both macro and micro-benchmarks, to establish both real-world behavior and highly con-
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trolled experimental results respectively. Benchmarks were primarily concerned with ebpH’s
overhead on system calls, although other factors were considered in the micro-benchmark
tests, such as signal handler overhead, IPC (interprocess-communication), and process cre-
ation latency. Macro-benchmarking data was collected on various systems under various
workloads, including: a server used in production; a personal computer; and a CCSL (Car-
leton Computer Security Lab) workstation. Micro-benchmarking data was collected on the
CCSL workstation only under an otherwise idle workload, in order to prevent corruption of
results by outside factors. Table 4.1 summarizes each of the systems used for the collection
of benchmarking data, including relevant hardware specifications.

Table 4.1: Systems used for the collection of ebpH benchmarking data.

System Description Specifications

arch Personal workstation

Kernel 5.5.10-arch1-1
CPU Intel i7-7700K (8) @ 4.500GHz
GPU NVIDIA GeForce GTX 1070
RAM 16GB DDR4 3000MT/s
Disk 1TB Samsung NVMe M.2 SSD

bronte CCSL workstation

Kernel 5.3.0-42-generic
CPU AMD Ryzen 7 1700 (16) @ 3.000GHz
GPU AMD Radeon RX
RAM 32GB DDR4 1200MT/s
Disk 250GB Samsung SATA SSD 850

homeostasis Mediawiki server

Kernel 5.3.0-42-generic
CPU Intel i7-3615QM (8) @ 2.300GHz
GPU Integrated
RAM 16GB DDR3 1600MT/s
Disk 500GB Crucial CT525MX3

4.1.1 lmbench Micro-Benchmark

McVoy’s lmbench [42, 43] is a Linux micro-benchmarking suite that has seen prominent use in
academia [4, 12, 46, 57] for establishing various performance metrics of UNIX-like systems.
The OS-category benchmarks in lmbench are most relevant to ebpH’s overhead.This category
provides performance metrics such as:

• Simple system call latency (c.f. Table 4.3 and Figure 4.1);
• select(2) latency on various file types (c.f. Table 4.4 and Figure 4.2);
• Signal handler latency (c.f. Table 4.5 and Figure 4.3);
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• Dynamic process creation latency (c.f. Table 4.6 and Figure 4.4);
• IPC (inter-process communication) latency for pipes and UNIX stream sockets (c.f.

Table 4.7 and Figure 4.5).

Simple system call and select(2) latency will give an idea of how ebpH affects system
call overhead directly, while signal handler latency will show the overhead caused by both
ebpH’s treatment of the underlying system calls as well as the signal-aware stack discussed
in Section 3.5.3. Finally, the process creation and IPC latency metrics will provide a better
picture of ebpH’s overhead in a more practical context.

4.1.2 Kernel Compilation Micro-Benchmark

While the contrived tests presented by lmbench provide a reliable and widely accepted
overview of performance characteristics, they are not necessarily representative of ebpH’s
impact in practice. In order to get an idea of ebpH’s impact on resource-intensive computa-
tional operations, I elected to include a kernel compilation performance micro-benchmark.
This also has the nice side effect of mirroring a similar test conducted on the original pH
system, which will aid in later comparison of the two (c.f. Section 4.3).

This benchmark consisted of timing the compilation of the Linux 5.6 kernel on bronte, using
all 16 of its logical cores. Five trials were run with ebpH enabled and five trials were run
without. Times were measured using bash’s time command and aggregated with awk. The
full shell script used to run these tests is available in Appendix C.

4.1.3 bpfbench Macro-Benchmarks

Since ebpH’s kernelspace functionality resides in system call hooks, much of its imposed over-
head on the system can be established by running macro-benchmarks on the time required
to make system calls. The data collected here will augment the selected system call data
from the lmbench micro-benchmarks by increasing its scope and placing it within the context
of realistic system workloads. Initially, I planned to use syscount [31] from bcc-tools for this
purpose, however this tool currently has a race condition that may affect results due to its
use of BPF_HASH rather than BPF_PERCPU_ARRAY for data storage (c.f. Table 2.2 on page 10).
Instead, an ad-hoc benchmarking tool, bpfbench11, was written in eBPF for this purpose.
Like syscount, bpfbench measures system call overhead by taking the difference of ktime (in
nanoseconds) between system call entry and return; this difference along with the number of
calls observed is stored in an eBPF map for later analysis. Unlike syscount, bpfbench stores

11Full source code available at https://github.com/willfindlay/bpfbench.

43

https://github.com/willfindlay/bpfbench


4 Measuring ebpH’s Overhead William Findlay

this data in a PERCPU_ARRAY, aggregating data at the end when necessary; this means that
neither the system call count nor the system call overhead is subject to race conditions like
its predecessor. See Appendix B for the BPF portion of bpfbench’s source code.

Tests were run under a variety of workloads and benchmarking data was collected using
bpfbench. For each dataset, the same test was conducted on the system twice: once with
ebpH running, and once without. All ebpH data was collected while ebpH was monitoring
the entire system (i.e. started immediately on boot via a systemd unit) and running with
normal parameters and logging settings. Table 4.2 provides a description of each dataset,
including the system and the workload tested.

Table 4.2: ebpH macro-benchmarking datasets.

Dataset System Workload Description

bronte-7day bronte Idle bpfbench, 7 days with ebpH and 7
days without

homeostasis-3day homeostasis Production bpfbench, 3 days with ebpH and 3
days without

arch-3day arch Normal use bpfbench, 3 days with ebpH and 3
days without

After benchmarking data was collected, overhead was calculated according to the following
equation:

Overheadsyscall =
Tebphsyscall

− Tbasesyscall

Tbasesyscall

where,

Tsyscall =
Total time

Number of occurrences

as measured by bpfbench.

Many system calls in Linux are designed to wait and return when some property becomes
true on a system resource; such calls are referred to as blocking system calls. Since many
blocking system calls introduce a high degree of variance in results, they have been pruned
from the results presented here. In particular, any system call with a standard deviation in
runtime higher than 10 microseconds has been removed from the presented results. This is an
effective heuristic for weeding out blocking system calls that could impact the integrity of the
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dataset while preserving those that have acceptable impact on results. Full, unadulterated
results are provided in Appendix D.

4.2 Results

This section presents the results of all benchmarks. Micro-benchmarking results will be pre-
sented first in order to provide a more statistically significant depiction of ebpH’s overhead,
followed by macro-benchmarking data collected with bpfbench to cover ebpH’s behavior in
production environments. Macro-benchmark results have been trimmed for brevity, and
pruned for outliers and results with unacceptably high variance. As mentioned, full datasets
are available in Appendix D.

4.2.1 bronte-lmbench System Latency Micro-Benchmark

1000 ebpH and 1000 non-ebpH OS-category trials were run on bronte, a workstation in the
CCSL (Carleton Computer Security Lab) at Carleton University. The results were then
averaged and compared to determine overhead.

Table 4.3: Results of the system call benchmarks from the bronte-lmbench dataset.
Standard deviations are given in parentheses and smaller overhead is better. Note that
the open/close benchmark shows the times of both system calls taken together, which
explains why the difference between base and ebpH times is doubled. This was an
unfortunate design choice by the developers of lmbench.

System Call Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

getppid 0.058 (0.0023) 0.416 (0.0157) 0.357811 614.784969
write 0.111 (0.0039) 0.469 (0.0168) 0.357955 321.179901
read 0.187 (0.0064) 0.540 (0.0185) 0.353581 189.189001
fstat 0.194 (0.0062) 0.552 (0.0171) 0.357821 184.176095
stat 0.587 (0.0146) 0.973 (0.0250) 0.386082 65.765787
open/close 1.043 (0.0348) 1.830 (0.0567) 0.787454 75.509370

As shown in Table 4.3, ebpH adds non-negligible overhead to simple system calls. However,
this result is misleading, as the actual difference between base and ebpH times is less than
a microsecond (about one third of a microsecond to be more precise). As soon as base
times for system calls approach one microsecond, (e.g. in the case of stat(2)), overhead
drops significantly. For extremely short calls like getppid(2), the overhead is just over 614%,
which is representative of the worst case, but longer system calls like stat(2), overhead drops
to about 66%. This overhead is more representative of the general case.
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Figure 4.1: Mean system call times from the bronte-lmbench dataset. Standard error
is given as error bars. Smaller difference in times is better.

The select(2) system call benchmarks provide an idea of the overhead imposed on a blocking
system call in a controlled environment; the more time the kernel spends blocking, the smaller
effect ebpH’s overhead has on system call runtime. select(2) [54] is used to wait until one
or more file descriptors become available for a given operation; the select(2) benchmarks
from lmbench invoke this system call on predefined sets of file descriptors, shown in Table 4.4.
The results here demonstrate that the overhead imposed by ebpH rapidly diminishes as the
duration spent blocking increases, and in some cases drops below the standard third of a

Table 4.4: Results of the select(2) benchmarks from the bronte-lmbench dataset.
Standard deviations are given in parentheses and smaller overhead is better.

Type Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

Regular File 10 0.362 (0.0128) 0.723 (0.0282) 0.360632 99.565990
Regular File 100 1.231 (0.0372) 1.596 (0.0443) 0.365494 29.699868
Regular File 250 2.639 (0.0799) 2.996 (0.0956) 0.356587 13.510287
Regular File 500 5.091 (0.1183) 5.426 (0.1490) 0.335187 6.584345
TCP Socket 10 0.436 (0.0144) 0.796 (0.0267) 0.360081 82.674990
TCP Socket 100 4.547 (0.1258) 4.928 (0.1792) 0.380938 8.378431
TCP Socket 250 11.433 (0.3849) 11.766 (0.3369) 0.332886 2.911606
TCP Socket 500 23.028 (0.8414) 23.530 (0.9567) 0.501917 2.179609
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microsecond that was observed previously; the likely explanation here is that the overhead
incurred by ebpH is occurring during time that would otherwise be spent blocking.

Figure 4.2: Mean select(2) times from the bronte-lmbench dataset. Standard error
is given as error bars. Smaller difference in times is better.

As discussed in Section 3.5.3, ebpH makes use of special logic to separate the non-
deterministic behavior caused by signal handlers from other observed process behavior.
Table 4.5 shows that the overhead imposed on the execution of simple signal handlers is
relatively low, around 39%. This result is especially impressive considering that it includes
the standard per-system-call overhead (c.f. Table 4.3) imposed on rt_sigreturn(2) [56],
which is invoked upon return from a signal handler.

Table 4.5: Results of the signal handler benchmarks from the bronte-lmbench dataset.
"Installation" represents the registration of a signal handler with rt_sigaction(2) and
"Handler" represents the time taken to complete a simple signal handler. Standard
deviations are given in parentheses and smaller overhead is better.

Type Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

Installation 0.205 (0.0061) 0.562 (0.0177) 0.357275 174.179379
Handler 1.333 (0.0420) 1.855 (0.0750) 0.522106 39.179999
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Figure 4.3: Mean signal handler times from the bronte-lmbench dataset. "Installa-
tion" represents the registration of a signal handler with rt_sigaction(2) and "Han-
dler" represents the time taken to complete a simple signal handler. Standard error is
given as error bars. Smaller difference in times is better.

While the aforementioned benchmarking results have been informative with respect to the
per-system-call and per-signal overhead of ebpH, they neglect to provide an accurate depic-
tion of what this overhead might look like in practice. To that end, the dynamic process
creation and IPC benchmarks offered by lmbench present a much clearer picture of ebpH’s
practical overhead. Table 4.6 presents the overhead of running three distinct process creation
C programs as follows:

• fork+exit forks12 itself and the child immediately exits;
• fork+execve forks itself and immediately executes a simple “hello world” program in

the child;
• fork+/bin/sh -c forks itself and spawns a shell which then invokes the same “hello

world” program described above. This roughly corresponds to the implementation of
the C standard library’s system(3) [71] interface.

The above three methods of process creation each involve increasing degrees of complexity
with respect to their system calls and, as a corollary, the overhead caused by ebpH increases
for each one. Stating with fork+exit, Table 4.6 shows that ebpH imposes very little overhead

12The current C standard library implementation of fork(3) actually produces the clone(2) system call
rather than fork(2).
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on basic process creation, on the order of 5 microseconds, or about 2.7%.

The fork+execve case introduces more overhead, due to the special operations that ebpH
must perform when a process first executes, such as looking up a binary’s inode information
and associating it with a profile (creating this profile if it does not yet exist). While this
operation is not free, it is inexpensive relative to the existing overhead of an execve(2) system
call and imposes a total performance overhead of just 8%.

Finally, fork+/bin/sh -c imposes the most overhead of all three methods; this makes sense
as it involves two execve(2) calls, one for /bin/sh and one for the “hello world” program, as
well as the additional per-system-call overhead from /bin/sh itself. Still, the overhead for
this method is only about 10%, which is acceptable in practice.

Table 4.6: Results of the process creation benchmarks from the bronte-lmbench
dataset. Standard deviations are given in parentheses and smaller overhead is better.

Process Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

fork+exit 200.503 (17.3410) 205.998 (11.2935) 5.494621 2.740415
fork+execve 536.914 (30.5695) 580.532 (47.9242) 43.617913 8.123821
fork+/bin/sh -c 1529.053 (20.5609) 1682.445 (13.9791) 153.392500 10.031866

Figure 4.4: Mean process creation times from the bronte-lmbench dataset. Standard
error is given as error bars. Smaller difference in times is better.
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Table 4.7 shows the overhead caused by ebpH on two methods of IPC, pipes and Unix domain
stream sockets. UNIX stream socket IPC, ebpH imposes an overhead of 1.7 microseconds,
or about 18%. For pipes, it imposes an overhead of 1.25 microseconds, or about 28%. While
these results are significant, they shouldn’t pose much of a problem for modern applications.

Table 4.7: Results of the IPC benchmarks from the bronte-lmbench dataset. Standard
deviations are given in parentheses and smaller overhead is better.

Type Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

Pipe 4.510 (0.0236) 5.768 (0.0394) 1.257634 27.886271
AF_UNIX 9.367 (0.3300) 11.067 (0.1340) 1.699890 18.148105

Figure 4.5: Mean IPC times from the bronte-lmbench dataset. Standard error is
given as error bars. Smaller difference in times is better.

4.2.2 bronte-kernel Kernel Compilation Micro-Benchmark

While lmbench provides a good representation of the overhead associated with system simple
system calls and various simple operations, it is not necessarily indicative of performance
impact as a whole. In order to ascertain how resource-intensive operations are affected by
ebpH, I ran a benchmark of Linux 5.6 kernel compilation times with and without ebpH.
Five trials were run without ebpH running and five more trials were run with ebpH running.
Table 4.8 shows the results of the benchmark.
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Table 4.8: Kernel compilation times from the bronte-kernel dataset. System rep-
resents CPU time spent in kernelspace, User represents CPU time spent in userspace,
and Elapsed represents real time elapsed. Note that the test was run using all 16 of
bronte’s logical cores, therefore true elapsed time is significantly shorter than system
and user CPU times. Standard deviations are given in parentheses and smaller overhead
is better.

Category Tbase (s) TebpH (s) Diff. (s) % Overhead

System 1525.412 (1.7603) 1687.833 (8.0621) 162.421667 10.647727
User 12333.737 (27.8529) 12370.957 (4.1244) 37.220000 0.301774
Elapsed 915.173 (3.9876) 924.032 (1.1194) 8.858333 0.967940

According to Table 4.8, ebpH has relatively small impact on the overhead of kernelspace
operations during compilation, with a System overhead of only 10.6%. This makes sense, as
most of the system calls being made during kernel compilation are relatively long to begin
with, such as execve(2). Longer system calls will have a higher base time and thus ebpH’s
sub-microsecond runtime has limited impact on total overhead. As expected, ebpH has
negligible impact on the User time, well within the margin of error. The total impact that
ebpH had on compilation times is reflected by the Elapsed time, which shows that ebpH only
had a 1% performance impact overall.

4.2.3 bronte-7day

The bronte-7day macro-benchmark was collected using bpfbench over a period of 14 days in
total: seven days with ebpH and seven without. bronte is a workstation in the CCSL lab at
Carleton University. Tests were run under an idle workload. Table 4.9 and Figure 4.6 show
the top 20 system calls by count (after removing outliers and high variance blocking system
calls) over the 14 day period along with associated overheads for the base and ebpH tests.

The data in Table 4.9 show that ebpH imposes anywhere from relatively moderate to severe
overhead on the most frequency executed system calls in bronte-7day. A few results show
slight performance improvements under ebpH outside, but these are anomalous. Such anoma-
lous results are likely due to ambient system factors such as caching, availability of resources,
or highly variable behavior based on flags, such as in the case of ioctl(2) whose runtime
depends on implementation details within various character devices. Besides the aforemen-
tioned anomalies, these results are mostly indicative of the overhead that ebpH imposes on
frequent system calls; however, the next two sections will present the same benchmark run
under production and ordinary use workloads, which will be more representative of ebpH’s
overhead in practice.
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Table 4.9: Top 20 system call overheads by count, with standard deviations of less
than 10 microseconds, in the bronte-7day dataset. Standard deviations are given in
parentheses.

System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

openat 279195479 4.425 (0.4740) 4.945 (0.3266) 0.520 11.758
close 165871572 0.380 (0.0608) 0.943 (0.0663) 0.563 148.282
fstat 158717480 0.671 (0.1075) 1.185 (0.0953) 0.513 76.446
write 44847090 10.249 (3.7750) 29.324 (4.8695) 19.075 186.108
mmap 37470156 4.495 (0.9819) 5.606 (0.6333) 1.111 24.713
stat 20292587 1.630 (0.6219) 1.843 (0.3344) 0.213 13.040
rt_sigaction 17141063 0.541 (0.1388) 1.245 (0.0579) 0.704 130.264
lstat 15784407 3.458 (2.6440) 3.446 (1.4707) -0.012 -0.334
lseek 15170536 0.335 (0.0473) 0.697 (0.0548) 0.362 108.186
brk 14737299 1.746 (0.3389) 2.447 (0.2186) 0.701 40.141
mprotect 12350781 4.514 (0.2597) 5.836 (0.3272) 1.322 29.281
access 10629461 3.194 (0.5274) 4.113 (0.5105) 0.920 28.802
pread64 9844226 4.817 (6.7486) 2.110 (0.3353) -2.707 -56.192
fcntl 5109067 0.356 (0.1166) 0.892 (0.1908) 0.536 150.356
recvmsg 4836760 1.843 (0.0290) 2.746 (0.0361) 0.903 49.013
rt_sigprocmask 4297139 0.788 (0.0875) 1.585 (0.0601) 0.797 101.198
munmap 3216182 9.475 (2.5120) 9.965 (2.3270) 0.490 5.177
ioctl 2613887 30.877 (8.1410) 12.949 (1.9564) -17.929 -58.064
newfstatat 2478092 3.062 (0.5031) 3.687 (0.2255) 0.625 20.421
geteuid 2020268 0.391 (0.0578) 1.161 (0.0718) 0.771 197.175
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Figure 4.6: Top 20 system call overheads by count, with standard deviations of less
than 10 microseconds, in the bronte-7day dataset. Time scale is logarithmic. Standard
error is given as error bars.
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4.2.4 homeostasis-3day

The homeostasis-3day macro-benchmark was collected using bpfbench over a period of six
days in total: three days with ebpH and three without. homeostasis is a Mediawiki server
used to host the COMP3000 course wiki at Carleton University. Tests were run under the
normal workload associated with running the webserver and SQL database. Table 4.10 and
Figure 4.7 show the top 20 system calls by count (after removing outliers and high variance
blocking system calls) over the six day period along with associated overheads for the base
and ebpH tests.

Table 4.10: Top 20 system call overheads by count, with standard deviations of less
than 10 microseconds, in the homeostasis-3day dataset. Standard deviations are given
in parentheses.

System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

recvfrom 22311033 4.599 (0.3375) 5.505 (0.2877) 0.906 19.705
stat 16578427 2.929 (0.3409) 3.467 (0.1842) 0.538 18.362
read 12023727 14.824 (3.8911) 13.446 (3.5872) -1.378 -9.296
lstat 11953074 3.560 (0.2693) 4.238 (0.6952) 0.678 19.052
sendto 11070639 11.330 (0.4644) 12.800 (0.2013) 1.469 12.969
times 9085541 0.518 (0.1353) 1.712 (1.6402) 1.194 230.587
sched_yield 7951003 0.810 (0.0547) 1.795 (0.1257) 0.986 121.760
writev 6195312 18.546 (7.1331) 18.717 (8.5272) 0.171 0.925
write 6102652 6.362 (3.2141) 15.007 (2.7556) 8.645 135.890
close 5701429 0.811 (0.0969) 1.236 (0.0387) 0.425 52.405
openat 4985018 8.221 (1.3344) 8.762 (0.3944) 0.541 6.578
fstat 4196505 1.025 (0.1166) 1.434 (0.0439) 0.409 39.878
rt_sigprocmask 3746321 0.969 (0.1343) 1.405 (0.1113) 0.436 44.988
access 3302798 5.721 (0.3865) 6.499 (0.1562) 0.778 13.599
lseek 3010731 0.463 (0.0679) 0.903 (0.1624) 0.440 95.068
mmap 2438472 5.424 (0.5294) 6.022 (0.2403) 0.598 11.024
getpid 2063206 1.068 (0.0177) 1.520 (0.0247) 0.452 42.350
recvmsg 1745288 9.652 (0.8664) 10.700 (0.5092) 1.048 10.857
rt_sigaction 1308454 0.450 (0.0363) 0.822 (0.0272) 0.372 82.691
fcntl 828473 1.727 (0.1388) 2.189 (0.1229) 0.462 26.749

As with the previous marco-benchmark, Table 4.10 shows that ebpH has moderate to signif-
icant impact on the runtime overhead of the most frequently executed system calls. Of the
five most frequent system calls, all present with an overhead of less than 20%, and read(2) in
particular shows a slight performance improvement under ebpH. As in the previous section,
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Figure 4.7: Top 20 system call overheads by count, with standard deviations of less
than 10 microseconds, in the homeostasis-3day dataset. Time scale is logarithmic.
Standard error is given as error bars.

this result is clearly pathological and is likely a result of ambient factors such as caching
and availability of resources. The overheads of ordinary, non-blocking system calls such
as getpid(2) and lseek(2) are consistent with previously observed results. In general, the
overheads presented here are unlikely to have significant impact on performance of modern
applications.

4.2.5 arch-3day

Similar to the homeostasis tests, the arch-3day macro-benchmark was collected over a period
of six days on arch, my personal desktop computer; the idea was to see what sort of overhead
ebpH caused during the everyday use of a personal workstation. While these results certainly
have a higher variance than previous results due to inconsistent usage and workload, it is
important to see how ebpH behaves on a variety of systems under a variety of use cases.
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Table 4.11 and Figure 4.8 show the top 20 system calls by count (after removing outliers and
high variance blocking system calls) over the six day period along with associated overheads
for the base and ebpH tests.

Table 4.11: Top 20 system call overheads by count, with standard deviations of less
than 10 microseconds, in the arch-3day dataset. Standard deviations are given in
parentheses.

System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

recvmsg 1581788435 2.964 (1.2181) 3.101 (0.8429) 0.137 4.631
read 559839058 3.684 (1.8254) 4.005 (1.5622) 0.321 8.713
sched_yield 557122573 0.634 (0.1591) 0.663 (0.1554) 0.030 4.697
write 422940971 7.108 (3.2055) 7.808 (2.0907) 0.700 9.851
getpid 357026536 0.903 (0.4142) 0.994 (0.2102) 0.091 10.111
writev 297206760 7.358 (2.5764) 7.193 (1.6120) -0.165 -2.239
setitimer 246047072 1.181 (0.4767) 1.133 (0.2606) -0.048 -4.094
stat 233556922 1.389 (0.2925) 1.706 (0.7753) 0.317 22.817
sendmsg 176379278 9.729 (4.7259) 9.744 (2.4594) 0.014 0.148
ioctl 101386112 10.028 (2.0969) 10.558 (1.9098) 0.530 5.285
madvise 58208675 8.194 (5.4377) 9.717 (6.8087) 1.524 18.599
openat 47987948 4.453 (1.4879) 5.174 (1.3422) 0.721 16.201
close 43600631 0.862 (0.2795) 1.022 (0.2182) 0.159 18.478
mprotect 39922557 3.950 (0.6694) 4.142 (0.6807) 0.191 4.844
epoll_ctl 39571935 2.058 (0.7853) 2.441 (1.5081) 0.383 18.585
gettid 39531180 1.068 (0.3854) 1.426 (0.4344) 0.358 33.466
recvfrom 39304167 2.478 (0.9323) 2.567 (0.8106) 0.089 3.603
lseek 25079617 0.591 (0.1506) 0.677 (0.1540) 0.086 14.535
readv 22072501 5.009 (2.1978) 4.692 (1.5339) -0.318 -6.339
timerfd_settime 21359440 3.406 (1.2268) 3.866 (0.6438) 0.459 13.485

The results shown in Table 4.11, are roughly consistent with previous macro-benchmarks. In
this dataset, the five most frequent calls present with an overhead of less than approximately
10%, an even better even better than previous trials. A few system calls show moderate
performance improvement, but as before, this is likely explained by ambient factors in the
system.

4.2.6 Summary

Section 4.2.1 shows that ebpH has significant impact on the overheads of short system calls
and that this impact diminishes as kernel runtime increases. These findings extend to other
aspects of system performance, such as process creation, interprocess communication, and
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Figure 4.8: Top 20 system call overheads by count, with standard deviations of less
than 10 microseconds, in the arch-3day dataset. Time scale is logarithmic. Standard
error is given as error bars.

signal handling. Section 4.2.2 demonstrates that ebpH imposes negligible overhead on kernel
compilation, a task that is highly intensive in CPU usage and involves the creation of many
processes. This further reinforces the notion that ebpH’s overhead is acceptable in practice,
its relatively high impact on short system call runtimes. The results from the bpfbench

macro-benchmarks (Section 4.2.3, Section 4.2.4, Section 4.2.5) show that while ebpH has
significant impact on the overhead of short system calls, this impact diminishes significantly
as base system call runtime increases. Further, the majority of frequent system calls on
a variety of different work loads tend to have a high enough base runtime that ebpH has
minimal impact in practice.
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4.3 Comparing Results with the Original pH

In Somayaji’s dissertation [58], he provides performance metrics on selected system calls
as well as kernel compilation benchmarks and X11 performance statistics. Some of the
methodology I have used for measuring ebpH’s performance directly mirrors this approach
in order to facilitate easy comparison between the two systems. In particular, the lmbench

micro-benchmarks and the kernel-build micro-benchmark will be informative in this regard.

The bronte-lmbench system call results in Table 4.3 on page 45 show that ebpH consistently
adds just over a third of a microsecond of runtime to system calls on bronte. Depending on
the call in question, this can result in anything from minor to significant overhead – different
system calls require different amounts of processing in kernelspace, depending on their design
and implementation. In the pH dissertation [58], Somayaji presents a small variety of system
call overheads with varying base times and shows that pH adds approximately 1.9 microsec-
onds of runtime. Although ebpH adds only about one sixth of this overhead, this result is
misleading due to the difference in hardware specifications between lydia, the system which
pH was tested on in 2002, and bronte, the system that ebpH was tested on; in particular,
bronte is a significantly faster and more powerful machine, which means that base runtime
will not be directly comparable between the two systems. The percent overhead statistic
may be slightly more informative here. For null system calls (that is, system calls which
require next to no thinking on the part of the kernel), such as getpid or getppid, ebpH adds
614% overhead, which may seem quite significant. In contrast, pH adds only about 165%.
However, if pH were tested on bronte today, this overhead would likely be much larger, as
the base execution time for system calls would be significantly smaller. As the complexity of
calls increases, the percent overheads expressed by pH and ebpH approach each other. For
instance, write(2) has an overhead of approximately 133% in pH and about 321% in ebpH.
sigaction(2) can also be compared with the signal handler install results from Table 4.5 on
page 47 (since that is in essence just a call to rt_sigaction(2)); pH achieves an overhead of
about 75% while ebpH adds about 175%.

The dynamic process creation latency results from bronte-lmbench will also be quite infor-
mative for establishing a comparison between pH and ebpH. In the pH dissertation [58],
Somayaji presents the overheads of three distinct process creation benchmarks, exactly the
same ones that I have used here to test ebpH. For the fork+exit test, pH achieves 3.3%

overhead, while ebpH achieves 2.7%; in this case, ebpH actually begins to outperform the
original pH. These results are also reflected in the next two tests, fork+execve and fork+/bin

/sh -c. For fork+execve, ebpH performs astonishingly well compared to its predecessor, with
an overhead of 8.1% compared to pH’s 273.6%. This result, however, is slightly misleading
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as pH loads profiles from disk into kernel memory on every execve(2) call, whereas ebpH
maintains them in a map. Thus, ebpH’s overhead does not include the overhead required
to load a profile into memory. Similarly, ebpH’s results in the fork+/bin/sh -c test show an
overhead of about 10%, while pH’s overhead is closer to 29%. The impact of the differences
in handling of profiles is more diminished here, although it is still a factor. Regardless, these
results show that ebpH is consistently able to either outperform or keep up with pH in real
applications.

Finally, the kernel compilation benchmarks presented in Section 4.2.2 show improvement
over the original pH results [58]. In particular, ebpH only adds about 10% overhead to
System time, compared to pH’s 38%; however, this large improvement is most likely due to
ebpH’s reduced overhead on execve(2) calls, which make up a large portion of kernelspace
overhead for compilation tasks. Even so, the end result is a 1% total performance overhead
for ebpH, compared to 3% for the original pH, which shows the ebpH can keep up with pH
in practice.

5 Discussion

Previous sections have presented the design, implementation, and testing of ebpH, and offered
a comparison between ebpH and its predecessor, pH, in light of design and implementation
differences between the two. Past sections have shown that ebpH supports many of the same
features as the original pH while offering significantly higher portability and adaptability.
Experimental results presented in the previous section have shown that its performance over-
head can compete with the original version. This section will discuss further the viability of
eBPF-based anomaly detection in light of the results, and present topics for future work to
improve and extend future versions of ebpH. Section 5.1 discusses the shortcomings of eBPF
that I believe need to be resolved in order to permit more complex intrusion detection soft-
ware within this paradigm, while Section 5.2 presents topics for future work in development,
testing, and design of future iterations of ebpH.

5.1 Shortcomings of eBPF

In previous sections, I have highlighted the important factors that make the eBPF paradigm
an excellent choice for the development and deployment of host-base intrusion detection
systems. While the experimental results in Section 4 have shown that eBPF can be as
efficient as kernel-based implementations and Section 3 has described how eBPF can be used
to implement many of the same features as kernel-based implementations, I have not yet
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touched on many of the shortcomings of the technology. This section will attempt to rectify
this gap in light of empirical observations from the development of ebpH.

5.1.1 Lack of Concurrency Control Mechanisms in Tracing Programs

As discussed in previous sections (Section 3.8), the lack of concurrency control mechanisms
in eBPF tracing programs [38, 39] is detrimental to the use of eBPF for the creation of
complex, security-sensitive applications. While the risks associated with non-deterministic
data are fine for simple tracing programs designed for use cases such as performance analysis,
this assumption quickly breaks down for more complex applications that rely on accurate
results. The current version of ebpH mostly gets away with this due to the way it handles
lookahead pairs combined with the use of atomic add and subtract operations for profile
flags. However, future iterations of ebpH may depend on more complex behavioral tracking
and analysis which is currently not possible in eBPF to an acceptable degree of certainty.

eBPF does have restricted concurrency primitives, such as bpf_spin_lock [38], but these are
limited to non-tracing (and non-socket) programs due to insufficient checks by the verifier.
This is to prevent buggy BPF programs from causing kernel functions to timeout, which
could potentially crash the system. Resolving this problem would require updates to the
verifier to ensure that it can properly check preemptions related to spin locks in tracing
programs. While this functionality is currently not available the BPF maintainers have
indicated that they are planning to support locking in tracing programs in the future [38].

5.1.2 Limited Support for Necessary Kernel Helpers

One of the major improvements of extended BPF over classic BPF is the introduction of
the bpf_call instruction to its bytecode [63, 64]. In particular, eBPF programs can invoke
a predetermined set of helper functions provided by the kernel [6, 25]. Due to verifiability
requirements on BPF programs, the set of kernel functions that can be invoked is highly
limited in scope. As of Linux 5.5, eBPF supports 117 distinct helper functions [38]. How-
ever, many of these helpers relate specifically to operations on eBPF maps and lookups
on architecture-specific kernel data structures and more still are limited to specific niche
program types, such as XDP, socket filter, or traffic classifier programs.

One particular pain-point that I encountered during the development of ebpH is the lack of a
reliable means of constructing pathnames in eBPF. The kernel provides helpers for doing so,
but these are not available for BPF programs. This means that ebpH is unable to support
hashing profiles by pathname, and instead must rely on the computation of a unique key
from filesystem metadata. While this solution is pragmatically the same, ebpH’s usability
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suffers as a result. In the original pH, profiles were stored on disk in subdirectories that
mirrored their pathname in the original filesystem; in ebpH however, they are simply stored
with the same filename as the corresponding profile key. This makes it difficult for users to
interact with ebpH without using ebph-ps to figure out the key of the profile they want first.
While there are potential workarounds for this, including the determination of pathnames
in userspace, these are not ideal in terms of performance or reliability. It is worth noting,
however, that a patch is currently under review to remedy this gap in eBPF’s functionality
[78].

5.1.3 Verifier Bugs

Although the verifier provides critical safety guarantees to eBPF programs, it suffers from
a few bugs that, in the best case, make it difficult to work with. In particular, the verifier
can be inconsistent when performing static analysis on large and complex programs, such
as the BPF programs employed by ebpH. To illustrate this complexity empirically, consider
Figure 5.1 which depicts the instruction flow of ebpH’s sys_exit tracepoint program.

Figure 5.1: The instruction flow of ebpH’s sys_exit tracepoint program. Note
the complexity of the BPF program. This figure was generated using bpftool and
graphviz’s osage tool.
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The verifier itself is a rather complex program; as of Linux 5.5, it consists of over 10,000
lines of C code [39]. As a consequence of this complexity, the probability of bugs increases
significantly. If the verifier fails at any stage in the verification process, it errs on the side
of caution and rejects the program. Unfortunately, this behavior does impact ebpH to an
extent. Due to a presently unknown bug in the verifier, it occasionally rejects the sys_exit

program depicted in Figure 5.1; this issue can be resolved by restarting the system. While
this behavior is certainly annoying, it is an acceptable trade-off for the safety guarantees
that the verifier provides when it is working properly.

One argument that may arise from this notion of inconsistent verifier behavior is whether
it truly protects the system at all from buggy BPF programs. After all, one of the primary
advantages cited for eBPF programs over kernel-based implementations is the ability to
guarantee production safety despite BPF code running in ring 0 with full access to the
kernel. A counter-point to this argument is that a 99% probability of guaranteeing safety is
better than a 0% probability – that is to say, having a verifier that works almost all of the
time is better than not having one at all.

5.1.4 Dropped Perf Buffer Submissions

Another primary advantage for using eBPF over traditional kernel-based implementations
is the ability to easily buffer communication with userspace. Context switches between
userspace and kernelspace are expensive [20]; eBPF largely mitigates this by allowing
userspace programs to buffer map access, which in turn allows for variable granularity in
the amount of context switches required per event. For instance, ebpH reads events from its
BPF programs using the perf event buffer interface provided by eBPF; to do this, it simply
polls each map every second via an event loop.

While perf buffers do reduce program overhead in practice, they have caveats of their own
that need to be addressed. For instance, BPF programs may outright refuse to submit some
perf events (this behavior was encountered during the development of ebpH) and events
that occur too frequently may fill the buffer completely, which in turn causes events to be
dropped. Although these caveats do pose significant challenges to the development of reliable
BPF programs, it is possible to circumvent them with careful design choices. For instance,
submission failure can be checked within the BPF program and backup mechanisms can then
be employed to be sure that the data makes it to userspace; dropped submissions that occur
due to high frequency events may be solved by tuning the size of the buffer or adjusting the
frequency at which the BPF program polls it.
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5.2 Future Work

This thesis was primarily focused on three important points:

1) Establishing the viability of eBPF as a method for host-based anomaly detection;
2) Showcasing and describing ebpH, a partial reimplementation of Somayaji’s pH [58] in

eBPF;
3) Determining the experimental and practical overhead of ebpH on system performance.

Although these points are enough to define a significant contribution in the context of an
undergraduate thesis, there remains several aspects of the project that can be improved upon
or more thoroughly analyzed, and used for determining the direction of future iterations or
other related research endeavors. To that end, I propose several topics for future work on
ebpH and related projects in this section. Many of these will be explored in depth as part
of my work for my upcoming Master of Computer Science thesis. In this section, I will be
covering the following points:

1) The need to control for further sources of non-determinism (c.f. Section 5.2.1);
2) Potential avenues for adding automated response to ebpH (Section 5.2.2);
3) A security analysis of ebpH (c.f. Section 5.2.3);
4) Refactoring ebpH to use new hashmap types to reduce memory overhead and squash

bugs (c.f. Section 5.2.4);
5) The need for a graphical user interface and subsequent usability study (c.f. Sec-

tion 5.2.5);
6) Retrofitting ebpH to make use of other sources of system data, beyond system calls

(c.f. Section 5.2.6).

5.2.1 Controlling for Further Sources of Non-Deterministic Behavior

While simple binaries do normalize relatively quickly in ebpH, the complex behavior of
many modern processes causes some binaries to never normalize. This is due to sources
of non-determinism in their behavior. Some examples of things that might introduce non-
determinism include scheduling hints, complex event-based behavior, and interprocess com-
munication.

Currently, ebpH handles the non-determinism of signal handlers by implementing a stack
of sequences and pushing to and popping from that stack as signal handlers are called
and returned. While this is a start, it does not capture all sources of non-determinism in
complex programs such as a web browser. Instead, ebpH needs to know what system calls
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are associated with non-deterministic behavior and treat these calls differently. Depending
on the severity of the issue, this may require a re-design of ebpH’s heuristics for analyzing
profile lookahead pairs.

Future work in this area will include determining commonalities between new sequences,
especially false positives in normalized binaries, and analyzing these commonalities to deduce
precisely what these sources of non-deterministic behavior are and how to mitigate related
issues therein. This will be a major focus of improvement for future iterations of ebpH.

5.2.2 Automating ebpH Response

ebpH’s predecessor, pH [58], was capable of responding to attacks by issuing delays to system
calls proportionally to recent anomalous behavior. The current version of ebpH lacks this
functionality due to implementation constraints imposed by eBPF. However, recent additions
to eBPF have made it more conducive to automated response [25]. In particular, Linux
5.3 introduced two critical helpers [29] for policy enforcement from BPF: bpf_signal and
bpf_override_return.

bpf_signal provides the ability for BPF programs to send arbitrary signals to the current
task directly from kernelspace. Since the signal is coming from the kernel, it will be de-
livered instantly, without the usual delays associated with sending signals from userspace.
By sending a process the signal SIGSTOP [55], it will be possible to stop its execution in real
time, during the offending system call. Subsequently, a SIGCONT [55] can be issued to wake
the process once its delay has been observed. This second signal could either be sent from
userspace (since we no longer have the same sense of urgency associated with the initial
response) or issued from some frequently invoked BPF tracepoint, for example sched_switch,
after a predetermined amount of time has passed.

bpf_override_return could be used to implement the second response category employed
in pH [58]: execve(2) abortion, cited by Somayaji’s dissertation as being necessary to
defeat certain classes of attacks (e.g. buffer overflows for shell code execution). With
bpf_override_return, ebpH can issue targeted error injections one of the helper functions
used by execve(2)-family calls to load binaries.

By combining the above two techniques, it will be possible to convert ebpH into a fully
functional intrusion prevention system, like its predecessor. Signals can be used to implement
process delays and targeted error injections can be used to implement execve(2) abortion.
With these two changes, ebpH’s functionality will become a superset of the original pH’s,
which will facilitate direct comparison between the two systems when conducting a security
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analysis (c.f. Section 5.2.3).

5.2.3 Security Analysis

In order to measure ebpH’s effectiveness at detecting and (in future versions) mitigating
attacks, it is necessary to conduct a thorough security analysis of the system. In anomaly
detection, there are a few important heuristics to consider when determining the efficacy of
a system: false positive rate (FPR), false negative rate (FNR), true positive rate (TPR),
true negative rate (TNR), and alarm precision (AP) [48]. When combined, these heuristics
provide an accurate representation of:

• How often the system flags legitimate behavior as anomalous (FPR);
• How often the system misses anomalous behavior (FNR);
• How often the system detects anomalous behavior (TPR);
• How often the system allows legitimate behavior (TNR);
• The ratio of true positives to total positives (AP).

According to the above definitions, FPR and FNR provide an indication of the error rate of
an anomaly detection system, while TPR and TNR provide an indication of the correctness
rate. Finally, AP provides an indication of what percentage of all flagged anomalies are
correct. Determining these five heuristics for ebpH will require carefully planned testing
strategies comprised of building known-good profiles, mounting various known attacks, and
measuring rates of flagged events against predetermined values. Additionally, the same
known-good profiles should be tested for extended periods of time under normal system
behavior to ensure that the rate of false positives is acceptable.

As a general-purpose anomaly-based IDS, it is important to show that ebpH is capable of
detecting a wide variety of attacks. The mimicry attacks described in Wagner and Soto’s
paper [75] are particularly interesting, as they were directly designed to defeat the original
pH system (albeit an earlier version with much shorter lookahead pair window length) by
constructing attack patterns that generate false negatives. The results depicted in their
paper should be compared against the results from testing and used to inform later changes
to ebpH.

5.2.4 Refactoring Profile and Process Hashmaps to Other Map Types

As discussed in previous sections, ebpH is not as memory-efficient as its predecessor due to
implementation details with how it stores profile and process data. Currently, ebpH uses two
ordinary hashmaps to store profiles and process information, which are created with a special
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flag that signals the kernel to dynamically allocate them rather than preallocate. While this
saves on the overhead of allocating all profiles and processes beforehand (which would be
prohibitively expensive), there are several problems with this design choice. In particular,
known issues with dynamic map allocation may cause deadlocks under conditions with high
event frequency [65] and the granularity of allocation is too large to efficiently store the large
sparse data structures required by ebpH to manage lookahead pairs in profile data.

To that end, I plan to make the following changes in a future iteration of ebpH:

1) Refactoring all hashmaps into the LRU_HASH type;
2) Refactoring profile data storage to use a HASH_OF_MAPS.

Refactoring Profiles and Processes to Use LRU_HASH. The LRU_HASH [25, 29] is an eBPF
map type of size n that keeps n entries preallocated at all times. When a BPF program
attempts to add an entry to a full LRU_HASH, it discards the least recently used data from
the map to make room for the new entry. While this behavior may not seem ideal, it serves
as a reasonable compromise between the current dynamic map allocation approach that
may cause deadlocks and a preallocation approach that would be infeasible due to memory
restrictions. With an LRU_HASH, the size of the preallocated map can be a fraction of the size
of the current maps that ebpH uses. For instance, ebpH’s process map has 4,194,304 entries
by default, one for each possible thread ID on the system, to ensure that new processes will
always have space in the map. With an LRU_HASH, this would no longer be needed, as adding
a new process to the map would simply cause ebpH to forget about the least recently used
process. Even using the generous default map size of 10,240 entries would represent a 99.7%
reduction in map size, which would in turn reduce the overhead of preallocating the entire
map significantly.

Refactoring Profile Data to Use HASH_OF_MAPS. HASH_OF_MAPS [25, 29] is a type of
map-in-map data structure that allows BPF programs to define and store maps inside of
other maps. While support for this was added in 2017 to Linux 4.12 [37], HASH_OF_MAPS and
ARRAY_OF_MAPS have only been supported in bcc [29] since a November 2019 patch [60]. With
map-in-map support, ebpH can redefine the way it stores profile data, significantly reducing
the granularity of profile data allocation. In particular, lookahead pair data can be stored
in a per-profile two-layer hashmap, indexed by two keys: current and previous system call.
This means that ebpH would only need to allocated the lookahead pairs that are currently
in use by a given profile, which would save significantly on memory overhead compared to
the current design.
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5.2.5 Reintroducing the ebpH GUI and Conducting a Usability Study

If ebpH is to be a truly adoptable security solution, it first needs to be a usable one. In its
current incarnation, ebpH is not user friendly; it supports minimal interaction through a set
of simple CLI programs and most user feedback and notification occurs through log files. In
order to ebpH to become usable software, the daemon needs a graphical user interface to act
as a dashboard for user interaction.

I envision the ebpH GUI as a way for the user to get detailed information about the behavior
of their system and make administrative decisions therein. For example, the user could view a
visual representation of recent anomalous behavior, inspect profiles for detailed information,
make modifications to profiles, and perform operations on running processes such as killing
them or blacklisting them from monitoring. This will allow the user to use ebpH as a tool
for visualizing system behavior and make easy modifications to ebpH’s enforcement on the
system.

Both during and after the development of the GUI, I plan to conduct usability studies to
get an idea of how users interact with ebpH, what their perception of the system is, and
whether changes need to be made to increase its potential for future adoption.

5.2.6 General System Introspection: Integrating Multiple Homeostatic Sys-
tems into ebpH

One of eBPF’s primary strengths is the ability to monitor the entire system at once. BPF
programs can be written to instrument system calls, kernel functions, signals, library calls,
memory allocations, keyboard input, incoming network packets – the list goes on. What’s
more, eBPF programs can freely communicate with each other and with userspace programs
through maps. Monitoring system call sequences is a good start for eBPF anomaly detection,
but this can be extended to do so much more. In Somayaji’s dissertation [58], he describes
future iterations of pH that consist of multiple homeostatic systems working together, inter-
acting with each other, and monitoring many aspects of system behavior in a loosely couple
manner. This vision fits the eBPF paradigm perfectly, and I believe that this is something
that will be achievable in future versions of ebpH.

After determining what aspects of system behavior it needs to monitor, extending ebpH in
such a manner would be a relatively straightforward process. The daemon’s API is already
extensible, and adding more data sources would be as simple as writing BPF programs to
instrument them; the BPF programs could then interact with each other via map access. All
that remains is to come up with a new heuristic to integrate the data sources into a cohesive
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detection and response mechanism. The original pH dissertation [58] can provide further
guidance in this regard.

Integrating multiple data sources in this way would not only move ebpH towards emu-
lating true homeostasis in biology, but would also serve as a means of dealing with the
non-deterministic behavior described in previous sections. With multiple homeostatic mech-
anisms providing feedback to each other, the impact of false positives in system call se-
quences will naturally diminish. The current prototype of ebpH already has an example
of this in the way that it handles signals – ebpH uses the invocation of a signal handler
to inform its decision-making with respect to novel system call sequences, and thus reduce
non-determinism in sequences.

6 Conclusion

In this thesis, I have presented the design and implementation (c.f. Section 3) of ebpH, a
host-based intrusion detection system written in eBPF that instruments system calls and
builds per-executable behavioral profiles. Experimental results (c.f. Section 4) have shown
that ebpH can keep up with the performance of its kernel-based predecessor, pH. Finally,
I presented my plans for the future of ebpH as a system that can integrate many facets of
system behavior by leveraging the eBPF paradigm to take advantage of its multi-faceted
capabilities with respect to system instrumentation (c.f. Section 5). Table 6.1 presents a
theoretical comparison between the future version of ebpH, the current version of ebpH, and
the original pH.

Table 6.1: Revisiting the comparison of ebpH and pH in light of topics for future work.
Note that ebpH 1.0 represents the current version of ebpH, while ebpH 2.0 represents
the future version of ebpH that was discussed in Section 5.2.
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ebpH 2.0 eBPF + Userspace Daemon Many aspects of system 3 3 3 3 3 3
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eBPF represents a powerful tool for building versatile, performant, and production safe in-
trusion detection systems. While current work in this area is representative of its advantages
in network-based IDS implementations, eBPF has equal merits in host-based implementa-
tions. The current version of ebpH serves as a proof of concept to demonstrate eBPF’s value
in this regard, and future iterations on my prototype will hopefully be able to take further
advantage of eBPF’s power and versatility to deliver a truly homeostatic intrusion detection
system.
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A eBPF Design Patterns

Listing A.1: Handling large datatypes in eBPF programs.

1 /* This is way too large to fit within
2 * the eBPF stack limit of 512 bytes */
3 struct bigdata_t
4 {
5 char foo [4096];
6 };
7
8 /* We read from this array every time we want to
9 * initialize a new struct bigdata_t */

10 BPF_ARRAY(__bigdata_t_init , struct bigdata_t , 1);
11
12 /* The main hashmap used to store our data */
13 BPF_HASH(bigdata_hash , u64 , struct bigdata_t);
14
15 /* Suppose this is a function where we need to use our
16 * bigdata_t struct */
17 int some_bpf_function(void)
18 {
19 /* We use this to look up from our
20 * __bigdata_t_init array */
21 int zero = 0;
22 /* A pointer to a bigdata_t */
23 struct bigdata_t *bigdata;
24 /* The key into our main hashmap
25 * Its value not important for this example */
26 u64 key = SOME_VALUE;
27
28 /* Read the zeroed struct from our array */
29 bigdata = __bigdata_t_init.lookup (&zero);
30 /* Make sure that bigdata is not NULL */
31 if (! bigdata)
32 return 0;
33 /* Copy bigdata to another map */
34 bigdata = bigdata_hash.lookup_or_try_init (&key , bigdata);
35
36 /* Perform whatever operations we want on bigdata ... */
37
38 return 0;
39 }
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B bpfbench Source Code

Listing B.1: The eBPF component of bpfbench.

1 /* bpfbench A better benchmarking tool written in eBPF.
2 * Copyright (C) 2020 William Findlay
3 *
4 * Heavily inspired by syscount from bcc -tools:
5 * https :// github.com/iovisor/bcc/blob/master/tools/syscount.py
6 *
7 * This program is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation , either version 3 of the License , or

10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful ,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not , see <https ://www.gnu.org/licenses

/>. */
19
20 #include <uapi/asm/unistd_64.h>
21 #include <linux/sched.h>
22 #include <linux/signal.h>
23
24 struct intermediate_t
25 {
26 u64 pid_tgid;
27 u64 start_time;
28 };
29
30 struct data_t
31 {
32 u64 count;
33 u64 overhead;
34 };
35
36 BPF_PERCPU_ARRAY(intermediate , struct intermediate_t , 1);
37 BPF_PERCPU_ARRAY(syscalls , struct data_t , NUM_SYSCALLS);
38
39 #ifdef FOLLOW
40 BPF_HASH(children , u32 , u8);
41
42 RAW_TRACEPOINT_PROBE(sched_process_fork)
43 {
44 struct task_struct *p = (struct task_struct *)ctx ->args [0];
45 struct task_struct *c = (struct task_struct *)ctx ->args [1];
46
47 u32 ppid = p->tgid;
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48
49 /* Filter ppid */
50 if (ppid != TRACE_PID && !children.lookup (&ppid))
51 {
52 return 0;
53 }
54
55 u32 cpid = c->tgid;
56
57 u8 zero = 0;
58
59 children.update (&cpid , &zero);
60
61 return 0;
62 }
63
64 RAW_TRACEPOINT_PROBE(sched_process_exit)
65 {
66 u32 pid = (bpf_get_current_pid_tgid () >> 32);
67
68 /* Filter ppid */
69 if (pid != TRACE_PID && !children.lookup (&pid))
70 {
71 return 0;
72 }
73
74 children.delete (&pid);
75
76 return 0;
77 }
78 #endif
79
80 TRACEPOINT_PROBE(raw_syscalls , sys_enter)
81 {
82 u64 pid_tgid = bpf_get_current_pid_tgid ();
83
84 /* Maybe filter by PID */
85 #if defined(TRACE_PID) && defined(FOLLOW)
86 u32 pid = (pid_tgid >> 32);
87 if (pid != TRACE_PID && !children.lookup (&pid))
88 {
89 return 0;
90 }
91 #elif defined(TRACE_PID)
92 if (pid_tgid >> 32 != TRACE_PID)
93 {
94 return 0;
95 }
96 #endif
97
98 /* Don’t trace self */
99 if (pid_tgid >> 32 == BPFBENCH_PID)
100 {
101 return 0;
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102 }
103
104 int zero = 0;
105 struct intermediate_t *start = intermediate.lookup (&zero);
106 if (!start)
107 {
108 return 0;
109 }
110
111 /* Record pit_tgid of initiating process ,
112 * we use this for error checking later */
113 start ->pid_tgid = pid_tgid;
114 /* Record start time */
115 start ->start_time = bpf_ktime_get_ns ();
116
117 return 0;
118 }
119
120 TRACEPOINT_PROBE(raw_syscalls , sys_exit)
121 {
122 u64 pid_tgid = bpf_get_current_pid_tgid ();
123
124 /* Maybe filter by PID */
125 #if defined(TRACE_PID) && defined(FOLLOW)
126 u32 pid = (pid_tgid >> 32);
127 if (pid != TRACE_PID && !children.lookup (&pid))
128 {
129 return 0;
130 }
131 #elif defined(TRACE_PID)
132 if (pid_tgid >> 32 != TRACE_PID)
133 {
134 return 0;
135 }
136 #endif
137
138 /* Don’t trace self */
139 if (pid_tgid >> 32 == BPFBENCH_PID)
140 {
141 return 0;
142 }
143
144 int zero = 0;
145 int syscall = args ->id;
146
147 /* Discard restarted syscalls due to system suspend */
148 if (args ->id == __NR_restart_syscall)
149 {
150 return 0;
151 }
152
153 struct data_t *data = syscalls.lookup (& syscall);
154 struct intermediate_t *start = intermediate.lookup (&zero);
155 if (start && data)
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156 {
157 /* We don’t want to count twice for calls that return in two

places */
158 if (pid_tgid != start ->pid_tgid)
159 {
160 return 0;
161 }
162 data ->count ++;
163 data ->overhead += bpf_ktime_get_ns () - start ->start_time;
164 }
165 if (start)
166 {
167 start ->pid_tgid = 0;
168 start ->start_time = 0;
169 }
170
171 return 0;
172 }
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C Script Used to Run Kernel Compilation Trials

Listing C.1: The shell script used to measure times for the kernel compilation bench-
mark.

1 #! /bin/bash
2
3 TRIALS =5
4 KERNEL_SOURCE =/var/tmp/linux
5
6 OUTFILE=$1
7 TEMP_FILE=$(mktemp)
8 TIMEFORMAT="%U %S %R"
9

10 [[ -z $1 ]] && { echo "Usage: $0 OUTFILE"; exit -1; }
11
12 build_kernel ()
13 {
14 cd "$KERNEL_SOURCE"
15 make clean
16 make -j $(nproc)
17 } 2>&1
18
19 run_experiment ()
20 (
21 echo "Clearing $TEMP_FILE"
22 > "$TEMP_FILE"
23 echo "Running once as a control ..."
24 build_kernel
25 echo "Running experiment ..."
26 for i in $(seq 1 $TRIALS); do
27 echo "Running trial $i..."
28 (time "build_kernel") 2>>"$TEMP_FILE"
29 done
30 awk ’BEGIN {printf "%12s %12s %12s\n", "USER", "SYSTEM", "ELAPSED "}

{printf "%12.2f %12.2f %12.2f\n", $1, $2, $3}’ "$TEMP_FILE" >
$OUTFILE

31 )
32
33 run_experiment
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D Full Macro-Benchmarking Datasets

Table D.1: All system call overhead data from the bronte-7day dataset.

System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

openat 279195479 4.425 (0.4740) 4.945 (0.3266) 0.520 11.758

read 189973544 27.331 (19.0762) 27.033 (28.3402) -0.298 -1.091

close 165871572 0.380 (0.0608) 0.943 (0.0663) 0.563 148.282

fstat 158717480 0.671 (0.1075) 1.185 (0.0953) 0.513 76.446

write 44847090 10.249 (3.7750) 29.324 (4.8695) 19.075 186.108

mmap 37470156 4.495 (0.9819) 5.606 (0.6333) 1.111 24.713

stat 20292587 1.630 (0.6219) 1.843 (0.3344) 0.213 13.040

rt_sigaction 17141063 0.541 (0.1388) 1.245 (0.0579) 0.704 130.264

lstat 15784407 3.458 (2.6440) 3.446 (1.4707) -0.012 -0.334

lseek 15170536 0.335 (0.0473) 0.697 (0.0548) 0.362 108.186

brk 14737299 1.746 (0.3389) 2.447 (0.2186) 0.701 40.141

mprotect 12350781 4.514 (0.2597) 5.836 (0.3272) 1.322 29.281

futex 11605847 375853.466 (165524.4161) 330584.134 (88868.7940) -45269.331 -12.044

access 10629461 3.194 (0.5274) 4.113 (0.5105) 0.920 28.802

pread64 9844226 4.817 (6.7486) 2.110 (0.3353) -2.707 -56.192

select 5290223 2973337.794 (4217227.9892) 121066.759 (18613.1063) -2852271.035 -95.928

poll 5214244 1797816.274 (902673.6480) 394727.553 (63364.1930) -1403088.721 -78.044

fcntl 5109067 0.356 (0.1166) 0.892 (0.1908) 0.536 150.356

recvmsg 4836760 1.843 (0.0290) 2.746 (0.0361) 0.903 49.013

rt_sigprocmask 4297139 0.788 (0.0875) 1.585 (0.0601) 0.797 101.198

munmap 3216182 9.475 (2.5120) 9.965 (2.3270) 0.490 5.177

ioctl 2613887 30.877 (8.1410) 12.949 (1.9564) -17.929 -58.064

newfstatat 2478092 3.062 (0.5031) 3.687 (0.2255) 0.625 20.421

wait4 2229544 1303.737 (1173.7399) 1809.082 (1146.1833) 505.345 38.761

execve 2183737 246.150 (58.4522) 250.532 (47.0592) 4.383 1.780

geteuid 2020268 0.391 (0.0578) 1.161 (0.0718) 0.771 197.175

arch_prctl 1836508 0.949 (0.0545) 1.931 (0.0845) 0.982 103.427

getdents 1773620 9.132 (7.4023) 7.070 (5.9365) -2.061 -22.572

clone 1643448 96.570 (8.2079) 105.905 (13.4513) 9.336 9.667

getpid 1345760 0.879 (0.0954) 2.217 (0.2570) 1.337 152.072

sendmsg 1198717 5.829 (4.2347) 5.801 (3.9481) -0.028 -0.485

kcmp 1167895 0.287 (0.1162) 0.675 (0.2596) 0.387 134.793

getuid 1133142 0.615 (0.0250) 1.417 (0.0755) 0.802 130.438

getgid 1100668 0.376 (0.0631) 1.155 (0.0563) 0.778 206.778

getegid 1100007 0.330 (0.0446) 1.098 (0.0478) 0.768 232.663

inotify_add_watch 1001423 2.944 (0.0408) 3.652 (0.0321) 0.708 24.054

getppid 893877 0.700 (0.0444) 1.607 (0.0906) 0.906 129.463

pselect6 871783 552.608 (266.3100) 607.129 (362.6311) 54.521 9.866

epoll_pwait 865287 848.526 (681.7851) 623.014 (477.4664) -225.512 -26.577

Continued on next page
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System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

dup 850670 0.682 (0.1263) 1.608 (0.3487) 0.926 135.780

dup2 801969 0.720 (0.0439) 1.449 (0.0786) 0.729 101.171

bpf 767874 9.085 (3.1248) 36.176 (0.7250) 27.091 298.184

unlinkat 738792 71.530 (24.3177) 77.020 (28.9250) 5.491 7.676

readlinkat 643699 3.288 (1.6376) 3.565 (1.4156) 0.277 8.441

readlink 610418 5.715 (2.4623) 5.234 (1.1079) -0.481 -8.419

epoll_ctl 593078 0.998 (0.3514) 1.569 (0.3462) 0.571 57.274

getcwd 582019 1.597 (0.1914) 2.533 (0.2333) 0.936 58.588

sysinfo 499451 4.272 (0.8872) 5.822 (0.7297) 1.550 36.269

sched_yield 438346 1.620 (0.2060) 2.489 (0.2001) 0.869 53.644

epoll_wait 408996 379104.579 (358230.5980) 210822.952 (134452.8266) -168281.627 -44.389

chmod 388759 5.991 (1.5032) 2.666 (0.0555) -3.325 -55.504

getrandom 362583 2.220 (0.7316) 2.894 (1.2451) 0.673 30.331

open 352480 1.889 (0.3223) 2.254 (0.0664) 0.365 19.339

ppoll 321920 165.476 (81.6912) 229.576 (232.8847) 64.101 38.737

timerfd_settime 296543 1.766 (0.3024) 2.477 (0.3258) 0.711 40.295

chdir 281056 3.242 (1.5487) 3.836 (1.8663) 0.594 18.326

fchmod 251632 2.394 (0.6298) 3.271 (0.7875) 0.877 36.620

fchdir 244923 0.688 (0.3271) 1.517 (0.6014) 0.830 120.635

writev 244533 14.286 (1.4247) 15.003 (1.1172) 0.717 5.017

readv 231997 2.825 (0.6819) 3.709 (0.5081) 0.884 31.274

getdents64 208290 6.830 (1.7440) 7.864 (1.4744) 1.034 15.142

fstatfs 207259 1.566 (1.1414) 1.889 (1.0522) 0.323 20.612

getrusage 202719 17.410 (3.4631) 18.945 (0.5085) 1.535 8.817

mkdir 178113 9.863 (9.7603) 7.900 (8.9436) -1.963 -19.901

set_robust_list 153963 0.546 (0.0678) 1.469 (0.0381) 0.923 168.947

pipe 153020 5.743 (0.2511) 6.579 (0.3872) 0.836 14.549

rmdir 143269 18.103 (5.7191) 15.779 (5.2759) -2.324 -12.837

set_tid_address 113565 0.776 (0.0769) 1.723 (0.0993) 0.947 122.004

recvfrom 112191 2.127 (0.2798) 2.915 (0.3687) 0.788 37.052

getxattr 96088 3.284 (0.7660) 4.073 (0.5514) 0.789 24.009

lgetxattr 95651 4.087 (1.6968) 5.926 (0.0919) 1.839 44.987

setsockopt 87877 1.727 (0.0500) 2.517 (0.0334) 0.790 45.727

rename 86162 189.931 (296.0329) 229.630 (358.4977) 39.699 20.902

fadvise64 76013 0.516 (0.2771) 0.914 (0.3313) 0.399 77.252

socket 75348 9.356 (0.5973) 10.140 (0.8776) 0.783 8.372

fsync 73345 2507.717 (158.3565) 2360.493 (507.0297) -147.224 -5.871

fchown 69849 5.337 (2.3031) 5.959 (2.3069) 0.622 11.662

prlimit64 68262 0.603 (0.0467) 1.355 (0.0944) 0.752 124.664

unlink 66486 10.498 (4.1286) 11.081 (3.5628) 0.583 5.553

timerfd_create 64696 2.979 (0.0307) 4.020 (0.0937) 1.041 34.930

sync_file_range 60800 26.419 (nan) 11.937 (3.6948) -14.482 -54.819

getsockopt 58590 2.358 (0.1706) 3.080 (0.1462) 0.723 30.659

statfs 46635 6.546 (0.5097) 7.762 (0.3390) 1.216 18.578
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System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

connect 45017 9.643 (0.5340) 10.383 (0.4784) 0.740 7.675

utimensat 43535 11.983 (8.4928) 9.060 (4.2830) -2.924 -24.398

getsockname 38725 1.419 (0.0419) 2.148 (0.0483) 0.730 51.447

utimes 38665 6.434 (0.7528) 6.725 (2.0135) 0.291 4.518

madvise 38191 5.637 (0.4587) 6.439 (0.8046) 0.802 14.220

inotify_rm_watch 37840 5.700 (2.9566) 5.880 (2.8518) 0.180 3.160

setxattr 37572 5.559 (3.4789) 5.504 (3.3063) -0.055 -0.996

prctl 32584 1.941 (0.4895) 2.722 (0.5948) 0.781 40.237

syslog 32079 1721.553 (335.8510) 1623.944 (164.3954) -97.609 -5.670

alarm 29062 1.291 (0.4087) 2.047 (0.7012) 0.756 58.603

sendto 28885 7.998 (0.9769) 8.462 (1.6214) 0.464 5.805

getpeername 27094 1.082 (0.0644) 1.817 (0.0596) 0.735 67.912

umask 20927 0.503 (0.0351) 1.390 (0.0439) 0.887 176.244

renameat 20165 76.899 (6.8716) 80.638 (7.3205) 3.739 4.863

getgroups 17481 0.562 (0.0879) 1.524 (0.2339) 0.962 171.263

setitimer 17059 1.502 (0.0417) 2.502 (0.0219) 1.001 66.638

pipe2 15523 4.151 (0.3140) 4.798 (0.2353) 0.647 15.581

msync 14799 0.592 (0.0281) 7.638 (17.3721) 7.046 1190.840

kill 13003 1.043 (0.0867) 1.747 (1.1464) 0.704 67.525

accept4 12468 8.002 (1.1831) 8.037 (1.7139) 0.035 0.437

sigaltstack 11286 1.026 (0.1058) 2.068 (0.1321) 1.042 101.589

waitid 10992 1750.917 (1041.9282) 2137.338 (1154.9186) 386.422 22.070

chown 10774 17.887 (20.9616) 22.026 (25.7463) 4.139 23.138

symlink 10627 6.027 (2.7622) 6.217 (2.7478) 0.190 3.156

getpgrp 8688 0.713 (0.1346) 1.720 (0.1712) 1.007 141.382

name_to_handle_at 7946 2.093 (0.0949) 2.789 (0.1735) 0.696 33.262

mremap 6488 3.112 (3.2713) 2.683 (2.9722) -0.428 -13.769

sendfile 6078 14.553 (3.3979) 14.233 (4.6966) -0.320 -2.201

faccessat 5618 4.068 (0.9643) 5.308 (0.5294) 1.240 30.480

eventfd2 5132 68.872 (121.8410) 47.287 (79.5189) -21.585 -31.340

link 4783 6.435 (0.8331) 7.235 (2.5968) 0.801 12.442

gettid 4506 0.986 (0.1710) 1.878 (0.0751) 0.892 90.522

flock 3913 3.259 (0.7136) 3.624 (1.1462) 0.365 11.201

pwrite64 3686 9.896 (8.6959) 7.339 (2.9281) -2.557 -25.837

ftruncate 3629 22.942 (5.4231) 25.481 (2.5254) 2.539 11.066

sendmmsg 3484 29.062 (4.4513) 31.722 (1.4625) 2.660 9.153

capget 3278 1.047 (0.0294) 1.789 (0.0551) 0.742 70.855

uname 2984 1.053 (0.1124) 1.791 (0.1070) 0.738 70.109

seccomp 2776 67.585 (91.8935) 197.182 (3.4011) 129.596 191.752

setgid 2384 2.164 (0.3254) 2.924 (0.2211) 0.760 35.121

mount 2357 290.232 (331.3788) 699.467 (49.7193) 409.236 141.003

dup3 1941 0.686 (0.0351) 1.397 (0.0697) 0.711 103.555

shutdown 1923 1.596 (0.1675) 2.186 (0.1287) 0.590 36.953

keyctl 1662 7.343 (0.2731) 8.267 (0.3824) 0.924 12.578
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fsetxattr 1512 8.260 (0.7050) 9.528 (0.9068) 1.268 15.353

fgetxattr 1477 2.428 (0.2948) 3.423 (0.4158) 0.995 41.000

inotify_init1 1401 1.533 (0.0935) 1.984 (0.6348) 0.451 29.428

setsid 1307 36.052 (1.3930) 36.549 (1.2892) 0.497 1.380

sched_setaffinity 1272 5.575 (0.1714) 6.975 (0.1756) 1.400 25.104

lchown 1256 7.629 (3.6310) 8.245 (3.3728) 0.616 8.068

setgroups 1192 3.101 (0.4245) 3.963 (0.5034) 0.862 27.803

bind 1178 3.969 (0.5092) 4.517 (0.4956) 0.548 13.795

fdatasync 1128 1304.538 (248.9383) 1272.244 (173.3184) -32.295 -2.476

utime 1101 6.588 (0.7826) 7.652 (1.6094) 1.065 16.160

memfd_create 1059 5.882 (0.3723) 6.874 (0.2232) 0.992 16.870

setresuid 943 1.650 (0.4754) 2.529 (0.5622) 0.880 53.316

getpriority 897 0.743 (0.0837) 1.501 (0.0822) 0.758 101.956

setresgid 896 1.380 (0.1867) 2.232 (0.2437) 0.853 61.806

symlinkat 844 24.027 (1.2150) 24.387 (1.3154) 0.360 1.497

add_key 796 16.648 (0.4756) 17.028 (0.6843) 0.380 2.282

setpgid 744 1.566 (0.1100) 2.380 (0.1025) 0.814 51.938

getpgid 630 0.762 (0.1273) 1.875 (0.0869) 1.113 146.019

mkdirat 577 49.126 (7.7785) 46.298 (11.6713) -2.828 -5.757

setuid 558 1.574 (0.1831) 2.289 (0.1573) 0.716 45.474

setpriority 538 1.122 (0.5139) 1.976 (0.7763) 0.853 76.004

sched_getaffinity 524 2.092 (0.2074) 2.988 (0.2262) 0.896 42.833

tgkill 523 2.706 (0.4341) 3.832 (0.5265) 1.126 41.605

getrlimit 520 1.131 (0.0986) 1.989 (0.1331) 0.858 75.845

capset 446 2.053 (0.1189) 2.751 (0.1805) 0.698 34.005

clock_adjtime 442 3.659 (0.2166) 4.387 (0.1423) 0.728 19.900

epoll_create1 430 1.849 (0.3047) 2.641 (0.3135) 0.792 42.849

accept 429 10.228 (1.2334) 10.635 (1.0583) 0.406 3.972

signalfd4 401 5.006 (0.4695) 6.027 (0.4185) 1.020 20.381

nanosleep 399 17278.595 (6199.0772) 18903.296 (6064.7203) 1624.701 9.403

ioprio_get 376 0.598 (0.0674) 1.300 (0.1635) 0.702 117.305

rt_sigtimedwait 279 19915.500 (7762.9670) 21108.125 (6745.3759) 1192.625 5.988

setfsuid 276 0.920 (0.0454) 1.811 (0.1023) 0.891 96.891

setfsgid 276 0.809 (0.0349) 1.715 (0.1250) 0.905 111.830

setreuid 267 1.732 (0.1660) 2.764 (0.4153) 1.032 59.554

fchmodat 245 13.463 (2.1201) 14.842 (2.2676) 1.379 10.246

setregid 232 1.569 (0.4057) 2.690 (0.3329) 1.121 71.447

mlock 231 29.251 (1.6483) 29.914 (1.2928) 0.663 2.267

flistxattr 208 0.773 (0.0965) 1.659 (0.1900) 0.886 114.618

sched_getscheduler 188 0.495 (0.0965) 1.117 (0.1585) 0.621 125.487

sched_getparam 188 0.522 (0.0809) 1.204 (0.1759) 0.682 130.575

llistxattr 186 2.279 (0.2810) 3.058 (0.3596) 0.780 34.213

umount2 165 402.891 (292.4102) 102.714 (12.5715) -300.177 -74.506

linkat 163 5.427 (0.9910) 5.820 (1.5905) 0.392 7.231
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getresuid 130 0.905 (0.2319) 1.893 (0.3248) 0.987 109.043

getresgid 130 0.732 (0.1127) 1.696 (0.3005) 0.964 131.775

unshare 98 132.266 (14.4241) 134.434 (nan) 2.168 1.639

removexattr 91 6.133 (0.8474) 6.595 (0.9322) 0.463 7.542

socketpair 75 7.473 (1.7407) 9.692 (1.0729) 2.219 29.691

fchownat 61 3.036 (nan) 4.350 (0.1061) 1.314 43.272

mknod 45 10.416 (0.9140) 10.462 (1.4283) 0.046 0.440

ioprio_set 45 2.683 (1.0812) 3.171 (0.3668) 0.488 18.178

clock_getres 36 1.478 (0.1084) 2.311 (0.4330) 0.833 56.389

sync 35 45280.136 (33818.7732) 27434.364 (12185.2157) -17845.772 -39.412

timer_create 33 4.249 (1.5299) 5.171 (1.4755) 0.922 21.712

timer_settime 33 2.352 (0.7608) 3.537 (0.7224) 1.184 50.353

timer_delete 33 1.200 (0.3308) 2.325 (0.4406) 1.125 93.747

listen 33 1.666 (0.4410) 2.129 (0.4065) 0.462 27.755

chroot 24 5.182 (0.3917) 5.574 (0.6389) 0.392 7.562

getsid 12 0.561 (0.0000) 1.513 (0.0442) 0.952 169.638

epoll_create 11 3.259 (0.4119) 3.966 (0.9472) 0.708 21.721

rt_sigpending 9 1.067 (0.1344) 1.965 (0.3635) 0.898 84.192

creat 7 41.283 (nan) 32.771 (nan) -8.512 -20.619

Table D.2: All system call overhead data from the homeostasis-3day dataset.

System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

futex 165360413 9564.857 (569.3384) 8989.095 (161.3186) -575.762 -6.020

recvfrom 22311033 4.599 (0.3375) 5.505 (0.2877) 0.906 19.705

stat 16578427 2.929 (0.3409) 3.467 (0.1842) 0.538 18.362

read 12023727 14.824 (3.8911) 13.446 (3.5872) -1.378 -9.296

lstat 11953074 3.560 (0.2693) 4.238 (0.6952) 0.678 19.052

poll 11243870 2769.346 (1104.6709) 10626.125 (1978.6730) 7856.779 283.705

sendto 11070639 11.330 (0.4644) 12.800 (0.2013) 1.469 12.969

times 9085541 0.518 (0.1353) 1.712 (1.6402) 1.194 230.587

sched_yield 7951003 0.810 (0.0547) 1.795 (0.1257) 0.986 121.760

writev 6195312 18.546 (7.1331) 18.717 (8.5272) 0.171 0.925

write 6102652 6.362 (3.2141) 15.007 (2.7556) 8.645 135.890

close 5701429 0.811 (0.0969) 1.236 (0.0387) 0.425 52.405

ppoll 5166406 650.215 (71.1027) 672.276 (29.9606) 22.061 3.393

openat 4985018 8.221 (1.3344) 8.762 (0.3944) 0.541 6.578

fstat 4196505 1.025 (0.1166) 1.434 (0.0439) 0.409 39.878

rt_sigprocmask 3746321 0.969 (0.1343) 1.405 (0.1113) 0.436 44.988

access 3302798 5.721 (0.3865) 6.499 (0.1562) 0.778 13.599

lseek 3010731 0.463 (0.0679) 0.903 (0.1624) 0.440 95.068

select 2695331 94941.201 (81713.2046) 95547.131 (28433.0566) 605.930 0.638

mmap 2438472 5.424 (0.5294) 6.022 (0.2403) 0.598 11.024
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getpid 2063206 1.068 (0.0177) 1.520 (0.0247) 0.452 42.350

recvmsg 1745288 9.652 (0.8664) 10.700 (0.5092) 1.048 10.857

ioctl 1600634 75.770 (21.1585) 39.999 (5.9090) -35.772 -47.211

rt_sigaction 1308454 0.450 (0.0363) 0.822 (0.0272) 0.372 82.691

pwrite64 1211214 33.987 (13.1969) 32.209 (15.3464) -1.778 -5.231

nanosleep 831765 4337.248 (2760.6910) 6387.868 (3558.7967) 2050.621 47.279

fcntl 828473 1.727 (0.1388) 2.189 (0.1229) 0.462 26.749

munmap 799214 24.262 (9.0015) 23.642 (6.1774) -0.621 -2.558

mprotect 763916 3.719 (0.3316) 4.859 (0.3913) 1.139 30.639

inotify_add_watch 731642 9.684 (0.3076) 10.397 (0.0379) 0.713 7.359

sendmsg 715096 28.613 (2.9826) 31.410 (1.7861) 2.797 9.774

io_submit 653975 24.521 (0.6282) 24.721 (0.5233) 0.200 0.817

getrusage 630232 18.067 (0.8315) 18.832 (0.4311) 0.766 4.239

getcwd 623946 2.435 (0.0655) 2.986 (0.0561) 0.551 22.614

wait4 588534 139.245 (41.9280) 128.121 (33.9076) -11.123 -7.988

bpf 568667 35.044 (nan) 42.441 (0.2640) 7.397 21.108

pread64 529807 33.586 (13.5777) 62.706 (31.8538) 29.119 86.699

sched_getaffinity 519130 6.886 (0.0408) 6.540 (0.0695) -0.346 -5.018

epoll_wait 511372 32147.893 (6916.3569) 27957.134 (5687.0478) -4190.759 -13.036

setsockopt 499293 3.288 (0.0582) 4.058 (0.0681) 0.770 23.408

chdir 486415 4.782 (2.3057) 5.519 (1.9869) 0.737 15.413

fsync 474263 2252.371 (64.4770) 2201.437 (48.4990) -50.934 -2.261

newfstatat 465724 2.720 (0.0633) 3.152 (0.1279) 0.432 15.899

socket 447104 22.022 (0.9650) 22.674 (0.3447) 0.651 2.958

readlinkat 424003 5.472 (0.2309) 6.018 (0.2487) 0.547 9.989

fchdir 387764 0.538 (0.1867) 1.022 (0.2632) 0.484 89.946

getuid 345883 1.064 (0.0683) 1.549 (0.0496) 0.485 45.536

geteuid 342207 0.628 (0.0181) 1.070 (0.0070) 0.441 70.284

getsockopt 337970 4.683 (0.3171) 4.522 (0.1451) -0.161 -3.441

timerfd_settime 303645 5.899 (0.1007) 6.848 (0.0742) 0.949 16.084

getgid 295956 0.550 (0.0498) 0.919 (0.0065) 0.369 67.116

getegid 294647 0.412 (0.0547) 0.951 (0.0422) 0.538 130.531

chmod 285318 10.123 (3.5617) 4.148 (0.1914) -5.974 -59.021

pselect6 279870 251.165 (188.7605) 155.688 (12.5032) -95.477 -38.014

getdents64 254935 23.730 (6.6393) 32.190 (17.7984) 8.460 35.649

semop 232070 8.505 (0.7238) 10.919 (6.2202) 2.414 28.387

setitimer 188116 1.719 (0.0174) 1.944 (0.0270) 0.225 13.066

brk 187968 2.518 (0.4246) 3.461 (0.9743) 0.943 37.440

shutdown 146915 9.517 (0.8884) 9.753 (0.2704) 0.236 2.475

connect 146375 24.046 (1.6188) 22.594 (0.9292) -1.452 -6.038

readlink 144049 5.951 (0.4600) 6.675 (0.2125) 0.724 12.167

kill 142861 2.877 (0.1130) 3.384 (0.1554) 0.508 17.640

epoll_ctl 139687 2.537 (0.2490) 3.178 (0.2130) 0.640 25.229

prlimit64 118213 0.763 (0.0538) 1.239 (0.0358) 0.475 62.249
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getsockname 111310 2.303 (0.0919) 2.732 (0.0686) 0.429 18.613

fdatasync 109234 2068.600 (31.8273) 2078.008 (61.8955) 9.407 0.455

gettid 98157 1.415 (0.0394) 2.328 (0.0727) 0.913 64.484

accept 92248 20.061 (0.3255) 20.050 (0.3696) -0.011 -0.054

alarm 91390 2.602 (0.9071) 3.456 (0.9397) 0.854 32.806

unlink 71782 15.968 (1.9847) 15.066 (1.7178) -0.902 -5.647

dup2 71312 0.938 (0.0508) 1.370 (0.0407) 0.431 45.955

accept4 70134 23.477 (0.8786) 23.794 (0.5145) 0.317 1.351

clone 61044 233.648 (49.8875) 192.581 (13.1702) -41.067 -17.576

arch_prctl 60885 0.637 (0.0344) 1.281 (0.0412) 0.644 101.178

madvise 59557 8.337 (0.4086) 9.459 (0.5577) 1.122 13.457

getrandom 51802 4.266 (0.2140) 4.309 (0.0402) 0.043 1.005

uname 51600 2.191 (0.0981) 2.835 (0.0857) 0.643 29.355

set_robust_list 48352 0.828 (0.0442) 1.469 (0.0742) 0.641 77.384

timerfd_create 43215 9.049 (0.1569) 8.912 (0.0856) -0.137 -1.518

kcmp 41534 0.685 (0.1117) 1.093 (0.1234) 0.408 59.528

setgroups 31508 4.485 (0.2355) 4.598 (0.2037) 0.112 2.497

execve 30754 294.823 (46.3304) 276.889 (26.6911) -17.934 -6.083

pipe 30128 9.576 (0.7654) 10.268 (0.5391) 0.692 7.221

statfs 28140 6.026 (0.4818) 6.442 (0.3628) 0.417 6.912

setresuid 26758 2.876 (0.0801) 3.573 (0.0975) 0.697 24.223

utimensat 23176 16.632 (7.8245) 15.674 (8.0638) -0.958 -5.762

prctl 23112 32.299 (12.5897) 37.082 (8.4547) 4.783 14.810

fchmod 21370 3.707 (1.3392) 4.759 (1.8607) 1.051 28.362

fchown 20985 8.342 (4.5080) 9.314 (4.9012) 0.971 11.645

getpeername 18616 1.345 (0.0737) 1.765 (0.1063) 0.420 31.239

set_tid_address 18288 0.712 (0.0497) 1.296 (0.0568) 0.584 82.034

getppid 17790 0.771 (0.0370) 1.250 (0.0372) 0.480 62.240

syslog 17000 3934.925 (105.4348) 1857.811 (56.5502) -2077.114 -52.787

setresgid 16354 8.792 (1.0384) 9.924 (0.8317) 1.132 12.872

setgid 16336 2.603 (0.4763) 2.800 (0.1279) 0.198 7.598

setuid 15675 2.124 (0.2415) 2.450 (0.1094) 0.326 15.333

epoll_pwait 15275 783.504 (513.8938) 701.483 (443.8357) -82.021 -10.468

rmdir 14971 16.843 (5.5855) 20.313 (2.0889) 3.470 20.603

umask 14759 0.500 (0.0279) 0.915 (0.0414) 0.415 83.086

dup 13776 0.892 (0.1010) 1.565 (0.0473) 0.673 75.425

fstatfs 13545 2.515 (0.6362) 3.084 (0.4063) 0.569 22.611

bind 13399 6.968 (0.3196) 7.555 (0.3560) 0.586 8.412

epoll_create 13348 5.717 (0.1087) 5.974 (0.2773) 0.257 4.495

name_to_handle_at 11975 1.939 (0.1219) 2.018 (0.0692) 0.079 4.057

waitid 8969 24.830 (9.1743) 21.439 (4.4987) -3.392 -13.659

ftruncate 8484 47.795 (5.2608) 41.835 (2.2947) -5.960 -12.470

epoll_create1 8411 4.990 (0.3246) 4.914 (0.3390) -0.076 -1.526

mkdir 8075 37.098 (10.5016) 39.364 (3.1570) 2.265 6.106
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mount 7959 13.323 (1.2319) 10.789 (0.8719) -2.534 -19.022

rename 7481 77.937 (31.2395) 358.368 (463.0603) 280.431 359.818

sysinfo 7195 3.617 (0.1721) 3.911 (0.1018) 0.294 8.134

signalfd4 7161 3.055 (0.0743) 3.295 (0.2081) 0.240 7.870

faccessat 5508 6.266 (1.7744) 8.141 (2.1988) 1.876 29.934

fadvise64 5449 2.892 (0.6150) 2.754 (0.8081) -0.137 -4.755

capget 5438 1.160 (0.0362) 1.504 (0.0355) 0.344 29.632

sigaltstack 5072 0.901 (0.0337) 1.631 (0.0462) 0.730 81.049

socketpair 5005 16.537 (1.4244) 15.864 (1.0003) -0.673 -4.069

seccomp 5002 85.576 (36.6381) 46.715 (15.2980) -38.861 -45.411

setsid 4253 32.749 (0.3734) 31.422 (0.6935) -1.327 -4.053

flock 4008 2.199 (0.3793) 2.700 (0.6815) 0.501 22.798

fallocate 3020 60.552 (22.9733) 58.087 (18.2098) -2.465 -4.071

getpgrp 2888 0.687 (0.0571) 1.447 (0.0826) 0.760 110.604

chroot 2822 10.291 (0.5346) 10.825 (0.5676) 0.534 5.186

utimes 2439 6.554 (1.8607) 11.930 (4.4321) 5.376 82.021

eventfd2 2332 4.390 (0.4100) 4.578 (0.6410) 0.188 4.291

unlinkat 2311 42.960 (29.0804) 31.892 (8.8560) -11.068 -25.764

getpriority 1961 0.964 (0.1168) 1.464 (0.0902) 0.499 51.767

pipe2 1824 9.789 (1.6143) 9.424 (1.2376) -0.365 -3.730

setpriority 1740 1.624 (0.2098) 2.106 (0.2062) 0.482 29.706

dup3 1486 0.994 (0.1734) 1.439 (0.1485) 0.445 44.750

capset 1475 5.283 (0.1149) 5.943 (0.1023) 0.660 12.487

setpgid 1456 2.158 (0.1516) 2.784 (0.1221) 0.626 28.998

timer_create 1364 3.798 (0.3037) 4.647 (0.3755) 0.849 22.351

timer_settime 1364 3.635 (0.3187) 4.396 (0.3167) 0.761 20.945

keyctl 1330 9.872 (0.6101) 10.434 (1.2237) 0.562 5.694

msync 1000 412.459 (451.8068) 229.793 (459.2825) -182.666 -44.287

inotify_rm_watch 958 12.272 (2.6979) 13.329 (0.8896) 1.057 8.614

setxattr 917 13.895 (3.2458) 14.535 (0.8582) 0.640 4.607

symlink 901 16.511 (4.6990) 16.361 (3.2118) -0.151 -0.911

io_setup 768 10.353 (1.1765) 10.887 (1.6963) 0.534 5.161

mremap 716 4.343 (3.8611) 7.367 (3.4055) 3.025 69.658

removexattr 656 10.892 (3.8090) 12.710 (3.6043) 1.818 16.696

add_key 647 15.060 (0.8460) 14.815 (0.8831) -0.245 -1.626

sched_getscheduler 596 0.725 (0.2024) 0.972 (0.3740) 0.246 33.963

setregid 346 2.240 (0.3999) 2.610 (0.6880) 0.370 16.531

setreuid 333 2.398 (0.2789) 2.799 (0.5427) 0.401 16.731

listen 331 2.380 (0.6436) 2.967 (0.6739) 0.587 24.657

mbind 312 8.921 (0.8724) 9.573 (1.4589) 0.652 7.307

unshare 312 176.909 (10.3202) 150.648 (16.1198) -26.261 -14.844

tgkill 292 8.369 (2.6964) 8.501 (2.4907) 0.132 1.577

sendmmsg 285 69.693 (5.0860) 70.061 (5.4376) 0.368 0.528

lchown 255 12.362 (5.4578) 21.226 (4.6904) 8.864 71.701
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getgroups 230 0.627 (0.0841) 1.107 (0.0611) 0.480 76.516

renameat 192 111.234 (53.9123) 119.582 (53.9572) 8.348 7.505

chown 186 8.103 (2.2176) 14.442 (19.3852) 6.339 78.236

umount2 184 522.444 (248.8937) 652.738 (220.6495) 130.294 24.939

getpgid 166 1.691 (0.5238) 3.606 (1.0481) 1.915 113.237

setfsuid 135 1.141 (0.4644) 1.252 (0.3599) 0.110 9.652

setfsgid 132 0.940 (0.3062) 1.157 (0.0863) 0.217 23.033

get_mempolicy 128 1.369 (0.1373) 2.022 (0.3528) 0.653 47.728

renameat2 126 13.231 (9.2806) 12.183 (10.6867) -1.049 -7.926

fsetxattr 114 8.822 (2.0807) 9.897 (2.1883) 1.074 12.177

sched_setscheduler 105 1.841 (0.4756) 2.999 (nan) 1.158 62.930

fgetxattr 95 4.308 (1.8595) 4.750 (1.8358) 0.442 10.261

inotify_init1 82 3.812 (1.2335) 6.808 (3.6418) 2.996 78.576

utime 72 8.615 (2.8295) 13.382 (1.9445) 4.767 55.331

getxattr 63 2.986 (1.3993) 4.087 (0.6636) 1.101 36.849

ioprio_get 62 0.655 (0.2609) 0.796 (0.1028) 0.141 21.531

mknod 62 9.282 (3.5964) 8.215 (5.0489) -1.067 -11.500

fchmodat 48 12.872 (4.0285) 12.813 (2.0723) -0.059 -0.462

getresuid 47 636.000 (1681.0002) 1.162 (0.1115) -634.838 -99.817

getresgid 45 0.448 (0.0485) 0.919 (0.0686) 0.471 105.171

ioprio_set 43 2.584 (0.6984) 3.105 (0.8668) 0.521 20.153

clock_getres 37 1.082 (0.1411) 2.524 (2.1706) 1.442 133.295

semctl 36 3.270 (0.4456) 3.403 (0.0491) 0.133 4.057

flistxattr 33 2.926 (3.7714) 1.301 (0.0653) -1.625 -55.548

sched_getparam 31 1.026 (0.8521) 0.657 (0.0854) -0.369 -35.965

memfd_create 31 8.433 (0.9810) 7.860 (nan) -0.573 -6.797

timer_delete 18 2.322 (0.2158) 2.873 (0.1288) 0.551 23.736

semget 12 3.805 (0.6143) 3.935 (0.1430) 0.129 3.399

personality 10 0.511 (0.1032) 0.858 (nan) 0.347 68.016

sched_setaffinity 7 12.673 (5.4024) 14.526 (5.2623) 1.853 14.624

mlock 5 22.155 (2.0455) 16.791 (nan) -5.364 -24.211

creat 2 53.996 (nan) 45.028 (nan) -8.968 -16.609

Table D.3: All system call overhead data from the arch-3day dataset.

System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

recvmsg 1581788435 2.964 (1.2181) 3.101 (0.8429) 0.137 4.631

futex 1153914634 426.257 (433.9952) 254.204 (202.6858) -172.053 -40.364

poll 637450332 450.252 (426.8380) 313.592 (222.8349) -136.660 -30.352

epoll_wait 572388943 747.918 (734.5878) 554.937 (412.2118) -192.981 -25.802

read 559839058 3.684 (1.8254) 4.005 (1.5622) 0.321 8.713

sched_yield 557122573 0.634 (0.1591) 0.663 (0.1554) 0.030 4.697

write 422940971 7.108 (3.2055) 7.808 (2.0907) 0.700 9.851
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System Call Count Tbase (µs) TebpH (µs) Diff. (µs) % Overhead

getpid 357026536 0.903 (0.4142) 0.994 (0.2102) 0.091 10.111

writev 297206760 7.358 (2.5764) 7.193 (1.6120) -0.165 -2.239

setitimer 246047072 1.181 (0.4767) 1.133 (0.2606) -0.048 -4.094

stat 233556922 1.389 (0.2925) 1.706 (0.7753) 0.317 22.817

sendmsg 176379278 9.729 (4.7259) 9.744 (2.4594) 0.014 0.148

ioctl 101386112 10.028 (2.0969) 10.558 (1.9098) 0.530 5.285

madvise 58208675 8.194 (5.4377) 9.717 (6.8087) 1.524 18.599

openat 47987948 4.453 (1.4879) 5.174 (1.3422) 0.721 16.201

close 43600631 0.862 (0.2795) 1.022 (0.2182) 0.159 18.478

mprotect 39922557 3.950 (0.6694) 4.142 (0.6807) 0.191 4.844

epoll_ctl 39571935 2.058 (0.7853) 2.441 (1.5081) 0.383 18.585

gettid 39531180 1.068 (0.3854) 1.426 (0.4344) 0.358 33.466

recvfrom 39304167 2.478 (0.9323) 2.567 (0.8106) 0.089 3.603

ppoll 29211927 994.708 (728.0881) 956.219 (428.0754) -38.489 -3.869

lseek 25079617 0.591 (0.1506) 0.677 (0.1540) 0.086 14.535

readv 22072501 5.009 (2.1978) 4.692 (1.5339) -0.318 -6.339

timerfd_settime 21359440 3.406 (1.2268) 3.866 (0.6438) 0.459 13.485

mmap 19616351 7.108 (2.2771) 7.155 (1.2866) 0.047 0.657

rt_sigprocmask 19322596 0.904 (0.3942) 1.170 (0.2496) 0.266 29.440

sendto 18508712 16.004 (4.3331) 15.475 (2.6258) -0.529 -3.307

clock_nanosleep 18388107 2118.791 (2285.1533) 1313.352 (1314.0287) -805.439 -38.014

epoll_pwait 15455024 110.613 (142.5396) 133.009 (229.8098) 22.396 20.247

fstat 14829552 0.770 (0.2474) 1.002 (0.2450) 0.231 29.988

rt_sigaction 10427406 0.769 (0.3289) 0.945 (0.2235) 0.176 22.913

pread 10228161 0.975 (0.3771) 1.687 (0.5250) 0.712 73.051

nanosleep 7551879 79.607 (4.3678) 81.194 (2.1049) 1.587 1.994

munmap 7541621 32.795 (13.7197) 35.188 (11.3567) 2.393 7.297

fcntl 7019123 1.025 (0.4219) 1.137 (0.2211) 0.112 10.976

lstat 6498123 1.863 (0.9083) 1.681 (0.3226) -0.182 -9.775

getdents64 6356074 14.202 (13.4776) 40.874 (51.4953) 26.672 187.812

readlink 6032931 4.919 (1.3350) 5.082 (1.1287) 0.163 3.322

access 5917735 2.353 (0.7906) 3.216 (1.2654) 0.863 36.659

socketpair 3883000 6.927 (2.3782) 7.165 (2.0906) 0.238 3.436

statx 3457706 4.155 (1.4674) 4.215 (1.7684) 0.060 1.434

select 3209767 4084.786 (165.7681) 2063.271 (371.1844) -2021.515 -49.489

ftruncate 3038511 4.402 (1.5136) 4.370 (0.7055) -0.032 -0.736

unlink 3001449 10.086 (3.6849) 11.317 (4.9733) 1.231 12.207

dup 2903144 1.150 (0.3380) 1.306 (0.2482) 0.156 13.550

chdir 2602453 2.595 (0.7500) 3.053 (0.5966) 0.457 17.607

getcwd 2592760 2.261 (0.8058) 2.593 (0.4898) 0.332 14.660

fstatfs 2476834 0.565 (0.0595) 0.614 (0.0307) 0.049 8.708

getuid 2257867 0.999 (0.3976) 1.137 (0.3254) 0.138 13.773

mincore 1751318 24.995 (8.4480) 22.203 (10.1664) -2.792 -11.169

brk 1647181 2.171 (0.6745) 3.046 (0.8761) 0.876 40.346
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sched_getaffinity 1456976 1.545 (0.3119) 1.661 (0.2691) 0.115 7.454

clock_gettime 938122 2.535 (1.2211) 2.917 (1.0884) 0.382 15.055

uname 888133 1.546 (0.5469) 1.873 (0.3111) 0.326 21.091

statfs 805016 4.882 (1.5734) 4.595 (0.8522) -0.286 -5.867

quotactl 774996 1.971 (0.4720) 1.977 (0.4507) 0.006 0.320

geteuid 766345 0.694 (0.2369) 0.919 (0.2211) 0.225 32.411

fadvise64 721235 0.394 (0.0725) 0.453 (0.0691) 0.058 14.789

bpf 698910 28.445 (2.3965) 32.355 (4.9609) 3.910 13.747

fallocate 697544 79.579 (13.6969) 96.844 (21.6456) 17.265 21.696

newfstatat 653553 2.166 (0.5787) 3.002 (1.3165) 0.836 38.615

getgid 629415 0.533 (0.2002) 0.677 (0.1275) 0.144 26.978

getegid 615838 0.522 (0.1944) 0.675 (0.1306) 0.154 29.431

getsockname 516755 1.653 (0.6037) 1.807 (0.4669) 0.153 9.256

socket 495486 9.919 (2.9520) 10.885 (2.5149) 0.966 9.737

tgkill 471981 6.439 (1.9738) 7.313 (0.7155) 0.874 13.567

prctl 463015 1.637 (0.4987) 2.112 (0.3647) 0.475 29.052

dup2 385341 1.498 (0.4686) 1.685 (0.3447) 0.187 12.471

arch_prctl 381049 0.959 (0.3157) 1.133 (0.2038) 0.174 18.154

prlimit64 356127 1.114 (0.2980) 1.473 (0.3399) 0.359 32.214

getrusage 352911 10.543 (1.3806) 10.455 (2.2438) -0.088 -0.833

wait4 352070 189.392 (101.9830) 150.898 (80.6353) -38.494 -20.325

setsockopt 309329 1.799 (0.3855) 1.915 (0.3828) 0.116 6.465

bind 288387 4.466 (1.5361) 4.967 (0.8361) 0.501 11.214

clone 279682 182.837 (50.9671) 169.594 (46.2882) -13.243 -7.243

getsockopt 269406 1.346 (0.2717) 1.539 (0.2333) 0.193 14.341

getpeername 266794 1.014 (0.4244) 1.020 (0.1482) 0.006 0.621

epoll_create1 262265 5.366 (1.7271) 5.801 (0.9044) 0.435 8.114

set_robust_list 257765 0.940 (0.2987) 1.213 (0.2947) 0.273 29.000

chmod 254583 2.636 (0.8072) 2.611 (0.4255) -0.025 -0.956

connect 236663 9.504 (2.2393) 10.303 (1.6276) 0.798 8.399

execve 195762 284.836 (72.0236) 292.361 (62.8953) 7.525 2.642

getrandom 181029 2.697 (2.0750) 2.268 (0.9067) -0.429 -15.896

rename 145515 78.842 (25.2564) 101.074 (32.9050) 22.233 28.199

pwrite 143187 19.871 (6.5413) 22.931 (12.5533) 3.060 15.400

mkdir 110833 7.485 (2.1245) 5.352 (2.5529) -2.134 -28.505

pipe2 106580 7.725 (1.7620) 8.167 (1.9245) 0.442 5.727

set_tid_address 96643 0.931 (0.2872) 1.136 (0.2117) 0.205 21.997

kill 94056 6.944 (2.2153) 7.549 (2.7507) 0.605 8.705

mremap 92326 1.307 (0.8703) 1.111 (0.4992) -0.197 -15.045

pipe 91285 6.426 (1.9846) 7.346 (1.5886) 0.920 14.310

inotify_add_watch 88453 7.338 (1.5806) 7.515 (1.0037) 0.177 2.408

sysinfo 77370 2.240 (0.4693) 2.600 (0.2817) 0.360 16.065

setpriority 62110 1.841 (0.5345) 2.077 (0.3978) 0.237 12.877

getppid 59182 1.188 (0.3525) 1.523 (0.2649) 0.335 28.215
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getpgrp 50166 1.088 (0.3430) 1.329 (0.2089) 0.242 22.232

shutdown 48317 2.239 (0.6166) 2.478 (0.4161) 0.239 10.666

setsid 47385 19.503 (6.3805) 23.045 (4.5943) 3.543 18.166

accept 42669 6.974 (1.4040) 7.212 (1.0157) 0.238 3.412

mlock 40158 1.584 (nan) 11.873 (12.2713) 10.289 649.537

munlock 40136 1.183 (nan) 4.303 (4.3049) 3.120 263.736

getpriority 38439 1.037 (0.2788) 1.201 (0.2328) 0.164 15.831

alarm 32861 1.114 (0.7017) 1.124 (0.2229) 0.010 0.924

rmdir 32321 4.789 (1.8910) 6.170 (3.3836) 1.380 28.823

accept4 31871 8.109 (2.0107) 8.310 (1.1277) 0.201 2.479

umask 26058 0.500 (0.1909) 0.548 (0.1504) 0.048 9.578

sigaltstack 22842 1.181 (0.4533) 1.228 (0.3013) 0.047 3.978

unlinkat 21483 4.268 (1.8606) 8.449 (5.2968) 4.180 97.934

eventfd2 21004 2.344 (0.5672) 2.593 (0.5763) 0.249 10.605

readlinkat 20383 3.852 (1.2550) 4.772 (1.6175) 0.920 23.895

shmctl 17817 1.114 (0.3635) 1.077 (0.2955) -0.037 -3.314

shmat 17811 8.006 (2.6191) 7.958 (2.5415) -0.047 -0.591

shmdt 17517 116.159 (90.8843) 181.750 (173.6531) 65.591 56.466

waitid 16406 16.620 (5.2803) 19.179 (8.5403) 2.559 15.398

capget 12660 1.070 (0.5001) 1.222 (0.3610) 0.152 14.224

kcmp 12435 0.782 (0.2690) 0.919 (0.2704) 0.138 17.633

memfd_create 11916 3.845 (0.8666) 4.199 (0.8787) 0.353 9.182

name_to_handle_at 10587 0.976 (0.6553) 0.809 (0.0823) -0.167 -17.102

sendmmsg 10343 36.938 (13.5596) 36.736 (5.0793) -0.202 -0.547

fsync 10298 4990.939 (1090.4855) 4503.783 (945.2196) -487.156 -9.761

shmget 8900 8.393 (2.7209) 8.694 (2.9172) 0.300 3.580

getxattr 8385 3.475 (2.0258) 3.771 (1.4989) 0.297 8.539

setpgid 6325 2.378 (0.7939) 2.777 (0.6730) 0.400 16.812

mount 5446 3.413 (0.3336) 3.470 (0.6521) 0.057 1.660

fdatasync 5148 2214.513 (406.2752) 1957.492 (182.1718) -257.021 -11.606

seccomp 4618 38.161 (17.8770) 48.395 (18.0017) 10.235 26.820

times 3704 10.924 (2.3170) 5.509 (4.3076) -5.415 -49.573

renameat2 3631 4.360 (2.6561) 8.606 (9.1713) 4.245 97.365

getgroups 3512 0.311 (0.0703) 0.470 (0.1792) 0.159 51.125

utimensat 3385 8.766 (5.4400) 8.127 (5.6680) -0.639 -7.295

link 3196 5.357 (0.6636) 6.804 (3.6961) 1.447 27.018

splice 2451 27.920 (26.0124) 17.747 (9.6127) -10.172 -36.434

flock 2398 1.182 (0.4555) 1.243 (1.1375) 0.061 5.158

sched_getscheduler 2261 0.514 (0.1910) 0.655 (0.2537) 0.141 27.427

getresgid 2200 0.522 (0.1408) 0.639 (0.1931) 0.117 22.454

getresuid 2199 0.823 (0.1626) 0.926 (0.1610) 0.103 12.543

inotify_rm_watch 1834 13.258 (4.6938) 13.187 (3.5123) -0.071 -0.533

symlink 1828 10.715 (5.1349) 12.937 (7.3054) 2.222 20.742

faccessat 1786 3.413 (0.9939) 3.619 (1.4270) 0.206 6.042
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sched_setattr 1465 3.444 (1.1068) 3.543 (0.9176) 0.099 2.890

fchmod 1426 3.247 (3.0129) 2.335 (1.7384) -0.912 -28.082

dup3 1296 1.727 (0.6069) 2.029 (0.5720) 0.303 17.538

inotify_init 1208 3.263 (1.2634) 3.211 (0.6462) -0.052 -1.587

getpgid 1175 0.633 (0.2693) 1.097 (0.4017) 0.463 73.129

epoll_create 1102 2.209 (0.6462) 2.382 (0.4900) 0.173 7.832

utimes 1008 1.691 (0.0720) 3.455 (4.7928) 1.763 104.260

timerfd 935 2.152 (0.6294) 2.196 (0.6670) 0.044 2.040

fchown 906 8.562 (6.3805) 3.895 (2.5272) -4.667 -54.504

msync 820 560.886 (106.0623) 604.759 (75.3636) 43.873 7.822

capset 769 1.974 (0.6319) 2.260 (0.8072) 0.286 14.486

sched_setscheduler 734 2.020 (0.7744) 2.774 (1.2989) 0.754 37.340

setresuid 594 1.077 (0.6333) 1.862 (1.0768) 0.785 72.920

utime 565 4.578 (1.1228) 5.938 (1.9210) 1.360 29.712

listen 563 1.117 (0.4182) 1.252 (0.2490) 0.136 12.148

sched_getattr 561 1.764 (0.7531) 1.906 (0.5220) 0.142 8.032

setresgid 560 0.913 (0.3810) 1.529 (0.5204) 0.616 67.549

mknod 518 2.152 (0.5041) 2.181 (0.5006) 0.029 1.330

umount2 511 99.740 (80.9811) 123.978 (83.9955) 24.237 24.300

fchdir 486 0.697 (0.1698) 1.322 (0.6761) 0.625 89.597

setxattr 467 4.740 (3.5943) 4.230 (1.7825) -0.511 -10.771

sched_get_priority_min 464 0.523 (0.3039) 0.647 (0.2750) 0.124 23.646

sched_get_priority_max 464 0.392 (0.2729) 0.525 (0.2460) 0.132 33.701

signalfd4 452 1.706 (0.5179) 1.945 (0.4618) 0.239 14.007

inotify_init1 313 3.180 (0.4790) 3.309 (0.4687) 0.129 4.057

keyctl 237 4.616 (2.6928) 3.685 (1.5061) -0.931 -20.166

chown 227 10.721 (nan) 10.145 (9.9877) -0.576 -5.370

removexattr 212 3.555 (2.5681) 2.107 (1.1652) -1.448 -40.730

setgroups 173 2.361 (1.4779) 2.542 (1.4836) 0.181 7.681

unshare 166 110.662 (48.7060) 98.943 (48.5908) -11.719 -10.590

creat 162 12.145 (6.5308) 3.939 (0.6329) -8.206 -67.563

timer_delete 153 4.474 (3.6236) 2.562 (1.3384) -1.911 -42.728

timer_create 153 1.551 (0.1406) 1.562 (0.0717) 0.011 0.716

chroot 148 5.674 (2.5170) 6.894 (7.9650) 1.220 21.502

readahead 134 7.488 (9.5739) 20.021 (32.7488) 12.533 167.362

add_key 117 6.293 (2.9372) 5.218 (1.5291) -1.074 -17.074

personality 70 0.291 (0.0599) 0.384 (0.0530) 0.093 31.908

sched_getparam 55 0.737 (0.1475) 1.005 (0.1522) 0.268 36.389

fchownat 53 5.012 (nan) 5.849 (3.4310) 0.837 16.707

pselect6 50 4.612 (nan) 3.816 (nan) -0.796 -17.259

setuid 46 1.287 (0.2118) 1.684 (1.0236) 0.397 30.813

setgid 42 1.687 (0.9743) 1.126 (0.6118) -0.561 -33.254

ioprio_set 39 1.614 (1.1916) 1.663 (0.7974) 0.050 3.092

lchown 37 2.304 (nan) 2.536 (0.6222) 0.232 10.087
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fsetxattr 33 2.908 (0.6858) 3.566 (1.9079) 0.658 22.644

getsid 32 0.586 (0.1004) 0.848 (0.5375) 0.262 44.753

ioperm 28 1.386 (0.0419) 1.240 (0.1513) -0.146 -10.550

fgetxattr 15 2.635 (0.4325) 2.727 (0.4321) 0.092 3.482

fchmodat 14 16.657 (nan) 6.085 (1.0062) -10.572 -63.472

iopl 14 0.355 (0.0294) 0.353 (0.0368) -0.002 -0.563

setfsuid 5 0.471 (nan) 1.037 (nan) 0.566 120.170

clock_getres 3 1.017 (nan) 1.629 (nan) 0.612 60.177
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