
Host-Based Anomaly Detection

with Extended BPF

William Findlay

Supervisor: Dr. Anil Somayaji
April 10th, 2020



eBPF at a High Level

 Inject user-specified code into the kernel
 BPF code runs in kernelspace, can 

instrument essentially all system behavior
 This sounds a lot like a kernel module…

➢ Key difference? Safety.

 Before they can run in the kernel, BPF 
programs are statically verified



eBPF in Industry

 Performance monitoring
➢ Netflix
➢ Facebook
➢ Google
➢ … many others

 Established tools
➢ bcc-tools (over 100 performance monitoring / visibility tools)

 Network security
➢ Cloudflare’s DDoS mitigation stack



What Makes eBPF Good for Security?

 A lot of security is about what we can see
➢ eBPF lets you see everything about your system
➢ … and it can do this with crazy low overhead

 Before eBPF, system introspection
came at a cost
➢ Speed
➢ Scope
➢ Production safety

 eBPF can do everything, without the
speed / scope / safety trade-off
➢ Although eBPF comes with its own nuances (more on this later)



eBPF Architecture

Figure 1: eBPF architecture in a nutshell.
Note that the list of program types is not exhaustive.



The Verifier in Detail

 eBPF verifier
➢ Ensure BPF program will not crash the kernel
➢ 10,000 lines of C code in kernel
➢ BPF system call traps to verifier on PROG_LOAD

 How to guarantee safety?
Limitations + simulation + static analysis
➢ 512 byte stack space
➢ No unbounded loops
➢ Max 1 million BPF instructions per program
➢ No buffer access with unbounded induction variable
➢ Etc.



BPF Programs Still Can Be Complex

 ebpH’s sys_exit tracepoint
➢ bpftool + graphviz osage
➢ 1,574 BPF instructions
➢ 1,930 machine 

instructions
 BPF programs can 

interact with each other
➢ Direct map access
➢ Tail calls

Figure 2: Instruction flow graph of ebpH’s sys_exit tracepoint.



Process Homeostasis

 Early anomaly detection system by
Anil Somayaji

 The idea:
➢ Instrument system calls to build per-executable

behavioral profiles
➢ Delay anomalous system calls proportionally to recent anomalies

 Problems?
➢ Implemented as a kernel patch
➢ Need to make crazy modifications for it to work
➢ Patch the scheduler, write in assembly language, etc.
➢ Not production-safe
➢ Not portable



ebpH: Back to the Future

 ebpH 
➢ “Extended BPF + Process Homeostasis”
➢ 20 year old technology...
➢ Re-written using modern technology

Table 1: Comparing ebpH and pH.



ebpH: Back to the Future

 ebpH 
➢ “Extended BPF + Process Homeostasis”
➢ 20 year old technology...
➢ Re-written using modern technology

Table 1: Comparing ebpH and pH.



ebpH: Back to the Future

 ebpH 
➢ “Extended BPF + Process Homeostasis”
➢ 20 year old technology...
➢ Re-written using modern technology

Table 1: Comparing ebpH and pH.



ebpH in Detail

Figure 3: Example (read, close) lookahead pair from ls.

Same idea as pH:
 Trace system calls
 Build profile of 

lookahead pairs
 Gather enough data
 Flag new lookahead 

pairs as anomalies

eBPF makes this safe.



How ebpH Collects Data

 Tracepoints (static kernel tracing)
➢ Instrument system calls
➢ Instrument scheduler

 Kprobes (dynamic kernel tracing)
➢ Instrument signal delivery

 Uprobes (dynamic user tracing)
➢ Instrument libebph.so
➢ Allow user to issue commands to ebpH’s BPF programs



ebpH Architecture

Figure 4: ebpH architecture in a nutshell.



Performance Analysis

 How does ebpH overhead compare
with pH?

 Benchmarks
➢ lmbench OS suite (micro)

➔ System call overhead
➔ Process creation overhead
➔ IPC overhead (signals, UDS, pipes)

➢ Kernel compilation benchmarks (micro)
➔ How does ebpH perform on real tasks?

➢ bpfbench (macro, ad-hoc)
➔ Real world system call overhead
➔ Most frequent system calls in practice



Performance Analysis

Table 2: Systems used for benchmarking tests.



lmbench Results

 Short system calls
➢ getppid(2): 614% overhead

➔ Almost no
kernelspace runtime

➢ stat(2): 65% overhead
➔ More significant 

kernelspace runtime

 Long system calls
➢ select(2)
➢ As high as 99%
➢ But as low as 2%

Figure 5: System call overheads.

Figure 6: Various select(2) system call overheads.

*Error bars show standard error.



lmbench Results

 Process creation
➢ fork+exit:

➔ 2.7% overhead
➢ fork+execve:

➔ 8.1% overhead
➢ fork+/bin/sh -c:

➔ 10% overhead

Figure 7: Process creation latency results.
Least to most complex.

*Error bars show standard error.



Kernel Compilation Results

 Kernel compilation
➢ CPU-intensive task
➢ A lot of userspace time
➢ Still many system calls

➔ Over 176 million 

 ebpH performs 
remarkably well here
➢ 10% kernelspace overhead
➢ 0.3% userspace overhead
➢ under 1% real overhead

Table 3: ebpH kernel compilation overheads.
Tests were run using 16 logical cores.

Table 4: Original pH kernel compilation overheads.

*Standard deviations in parentheses.



bpfbench Results

 Looked at top 20 system calls by count
from three datasets
➢ arch (personal use)
➢ bronte (idle)
➢ homeostasis (production use)

 Most frequent system calls have acceptable 
overhead
➢ Anywhere from about 5% to about 150%

 Idle system reported significantly more 
overhead than the other two
➢ Lower overhead when it actually matters



Performance Summary

 ebpH imposes significant overhead on 
some system calls
➢ But this is not the whole story

➔ Longer system calls means less overhead
➔ System call overhead ≠ overall impact

 Impact on most frequent system calls can 
be much lower in practice

 ebpH does very well on real tasks
➢ In some cases better than the original pH
➢ Slowdown is mostly imperceptible in practice



Responding to Attacks with eBPF

 bpf_signal
➢ Real-time signals from kernelspace (instantaneously)
➢ SIGKILL, SIGSTOP, SIGCONT… you name it
➢ Linux 5.3

 bpf_signal_thread
➢ Like bpf_signal but target a specific thread
➢ Linux 5.5

 bpf_override_return
➢ Targeted error injection
➢ Whitelisted kernel functions only :(
➢ Linux 4.16



Future Work: Responding to Attacks

 Add system call delays
➢ bpf_signal → send SIGSTOP and SIGCONT for delays

 Add execve abortion
➢ bpf_override_return → target execve implementation 

Table 1A: Adding response to ebpH.



Future Work: Saving on Memory Overhead

 Current map allocation is too granular
➢ One big map for profiles, one big map for processes

 Solution: use new map types
➢ LRU_HASH → smaller map, discard least recently used entries
➢ HASH_OF_MAPS →nested maps for lookahead pairs (sparse array )

Table 1B: Fixing ebpH’s memory overhead.



What Other Security Problems Can We Solve with eBPF?

 Anomaly detection
➢ Add more sources of data?
➢ No reason to stop at system calls

 DDoS mitigation
➢ Cloudflare is doing this with eBPF/XDP

 Increasing visibility of attacks / misuse
➢ ebpH does a bit of this
➢ bcc tools are great for this

➔ e.g. capable(8), eperm(8), setuids(8), execsnoop(8), etc.



What Other Security Problems Can We Solve with eBPF?

 Sandboxing?
➢ Externally enforcing seccomp rules with eBPF?
➢ bpf_signal could do this easily

 Name something you want to trace
➢ eBPF can do it
➢ And it can do it safely and with excellent performance

 ebpH is just the beginning
➢ Uses a small fraction of eBPF’s capabilities



Conclusion

 ebpH:
➢ is as fast as the original implementation
➢ supports most of the original functionality
➢ can be made even better, using new eBPF features

 Future of ebpH?
➢ Ecosystem of BPF programs
➢ All talking to each other, sharing information about diff. parts of system
➢ Beyond just system call tracing

 Future of eBPF in OS security?
➢ We are going to be seeing a lot more of this
➢ eBPF keeps getting better and better
➢ Replacing many in-kernel implementations with something safer,

with less opportunity cost



Some Links

https://github.com/iovisor/bcc

https://github.com/willfindlay/honors-thesis

https://github.com/willfindlay/ebph
PRs welcome!

Thank you!

https://github.com/iovisor/bcc
https://github.com/willfindlay/honors-thesis
https://github.com/willfindlay/ebph

